www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Halbierung eines Würfels
Halbierung eines Würfels < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbierung eines Würfels: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:04 Do 30.06.2016
Autor: Reynir

Hi,
ich bin es wieder. :)
Ich stelle mir gerade folgendes Setting vor, angenommen, man hat einen Würfel mit Seitenlänge a.
Wenn ich ihn auf eine seiner Seiten stelle soll er zur Hälfte mit Wasser gefüllt sein (Konsequenz er wird durch jede Lage des Wassers in zwei volumengleiche Hälften geteilt).
Stelle ich ihn auf eine seiner Seitenflächen, so habe ich ein Quadrat der Seitenlänge a als Wasseroberfläche. Stelle ich ihn auf eine Kante, so kriege ich ein Rechteck mit den Seitenlängen [mm] $\sqrt(2)*a [/mm] $ und $a$. Wenn ich es auf eine Ecke stelle, so erhalte ich ein Sechseck, dass es teilt.
Meint ihr, ich habe was vergessen, speziell denke ich daran, wenn ich den Würfel auf einer Seitenkante stehen habe und erst zur Ecke und dann über diese zu einer Seitenfläche kippe?
Viele Dank für eure Hilfe,
Reynir

        
Bezug
Halbierung eines Würfels: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:06 Fr 01.07.2016
Autor: Reynir

Hi,
ich bin jetzt soweit, dass ich glaube, ich habe alle möglichen Formen (die oben genannten und etwaige unregelmäßige Abwandlungen davon),  nur scheitere ich daran zu begründen, dass kein Fünfeck auftreten kann (oder doch?). Ich bin da unsicher, weil ich die Vermutung habe, dass ja gelten muss, dass der Mittelpunkt jeder Raumdiagonalen des Würfels in der entsprechenden Teilungsebene liegen muss (sonst wäre der Würfel ja nicht zur Hälfte gefüllt).
Dann habe ich mich geogebra probiert und kein Fünfeck unter der Voraussetzung des genannten hinbekommen, kann man das auch eleganter zeigen.
Ich dachte daran zu sagen, ich lege den Würfel mit einer Ecke in den Ursprung und betrachte die Ebenen in der Hesseschen Normalenform und lasse die Ebene entlang der Diagonalen wandern, die von $(0,0,0) $ nach $(1,1,1)$ (Einheitswürfel). Da ja der Mittelpunkt in der Ebene liegen soll, wäre es der Normalenvektor, der genau durch den Mittelpunkt geht, aber dieser Ansatz ist zu eng...
Was kann man da machen?
Viele Grüße,
Reynir

Bezug
        
Bezug
Halbierung eines Würfels: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Fr 01.07.2016
Autor: Reynir

Es hat sich erledigt.
Viele Grüße,
Reynir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de