www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Halbleiter
Halbleiter < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbleiter: Tipp
Status: (Frage) beantwortet Status 
Datum: 01:05 Fr 15.07.2011
Autor: mb588

Hallo.

ich beschäftige mich gerade mit der Schrödingergleichung in Halbleiter-Quanten-Tröge (HQT). Es geht dabei um die Motivation, warum man die Elektronen im Leitungsband, getrennt von den Löchern im Valenzband betrachtet. Die Lösung und auch die Herleitung dafür hab ich, aber leider verstehe ich dabei nicht alles! Es handelt sich ja um ein Zwei-Körper-Problem, also:

[mm] \left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{h}+V(z_{e})+V(z_{h})+V(\vec{r}_{e}-\vec{r}_{h})\right]\psi(\vec{r}_{e},\vec{r}_{h})=E\psi(\vec{r}_{e},\vec{r}_{h}) [/mm]

Dabei ist e...Elektron und h...Loch und [mm] V(\vec{r}_{e}-\vec{r}_{h}) [/mm] ist die Coulombwechselwirkung.

Jetzt wählt man den Ansatz:

[mm] \psi(\vec{r}_{e},\vec{r}_{h})=\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}}) [/mm] mit [mm] r_{e,h}=(\vec{\rho}_{e,h},z_{e,h})=(x_{e,h},y_{e,h},z_{e,h}) [/mm]

Das wird in der ersten Formel eingesetzt:

[mm] \left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{h}+V(z_{e})+V(z_{h})+V(\vec{r}_{e}-\vec{r}_{h})\right]\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}}) [/mm]

Daraus folgt (dieses Schritt verstehe ich nicht):

[mm] \left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,h}+E_{e}+E_{h}+V(\vec{r}_{e}-\vec{r}_{h})\right]\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}}) [/mm]

Jetzt wird die gesamte Gleichung mit:

[mm] \int dz_{e}\int dz_{h} \phi^{\*}(z_{e})\phi^{\*}(z_{h}) [/mm]

Dann folgt:

[mm] \left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,h}+E_{e}+E_{h}+\int dz_{e}\int dz_{h} \phi^{\*}(z_{e})\phi^{\*}(z_{h})V(\vec{r}_{e}-\vec{r}_{h})\right]\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\eta(\vec{\rho_{e}},\vec{\rho_{h}}) [/mm]

Das ist denke ich klar. Auf der linken Seite der Gleichung  geht das Integral überall vorbei, außer bei [mm] V(\vec{r}_{e}-\vec{r}_{h}), [/mm] weil dies noch von z abhängt, Auf der rechten Seite steht nur noch [mm] E\eta(\vec{\rho_{e}},\vec{\rho_{h}}), [/mm] weil auf Grund der Normierung gilt:

[mm] \int dz_{e}\int dz_{h} |\phi(z_{e})|^{2}|\phi(z_{h})|^{2}=1 [/mm]

Die Motivation besteht nun darin, dass dieses Integral auf der linken Seite analytisch nur schwer Lösbar ist und deshalb betrachtet man die Elektronen getrennt von den Löcher! Ist das soweit richtig? Könntet einer mir den Schritt erklären den ich nicht verstehe?

        
Bezug
Halbleiter: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Sa 16.07.2011
Autor: rainerS

Hallo!

> Hallo.
>  
> ich beschäftige mich gerade mit der Schrödingergleichung
> in Halbleiter-Quanten-Tröge (HQT). Es geht dabei um die
> Motivation, warum man die Elektronen im Leitungsband,
> getrennt von den Löchern im Valenzband betrachtet. Die
> Lösung und auch die Herleitung dafür hab ich, aber leider
> verstehe ich dabei nicht alles! Es handelt sich ja um ein
> Zwei-Körper-Problem, also:
>  
> [mm]\left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{h}+V(z_{e})+V(z_{h})+V(\vec{r}_{e}-\vec{r}_{h})\right]\psi(\vec{r}_{e},\vec{r}_{h})=E\psi(\vec{r}_{e},\vec{r}_{h})[/mm]
>  
> Dabei ist e...Elektron und h...Loch und
> [mm]V(\vec{r}_{e}-\vec{r}_{h})[/mm] ist die Coulombwechselwirkung.
>  
> Jetzt wählt man den Ansatz:
>
> [mm]\psi(\vec{r}_{e},\vec{r}_{h})=\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})[/mm]
> mit
> [mm]r_{e,h}=(\vec{\rho}_{e,h},z_{e,h})=(x_{e,h},y_{e,h},z_{e,h})[/mm]
>  
> Das wird in der ersten Formel eingesetzt:
>  
> [mm]\left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{h}+V(z_{e})+V(z_{h})+V(\vec{r}_{e}-\vec{r}_{h})\right]\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})[/mm]
>  
> Daraus folgt (dieses Schritt verstehe ich nicht):
>  
> [mm]\left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,h}+E_{e}+E_{h}+V(\vec{r}_{e}-\vec{r}_{h})\right]\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})[/mm]

Das ist die Anwendung der Schrödingergleichung für [mm] $\phi_e$ [/mm] und [mm] $\phi_h$. [/mm] Es ist

[mm] \Delta_{e} = \Delta_{\rho,e}+\bruch{\partial^2}{\partial z_e^2} [/mm]

und

[mm]\left(-\frac{\hbar^{2}}{2m_{e}} \bruch{\partial^2}{\partial z_e^2}+V(z_e)\right)\phi_{e}(z_{e})=E_e \phi_{e}(z_{e}) [/mm],

analog für [mm] $\phi_h$. [/mm]

> Jetzt wird die gesamte Gleichung mit:
>  
> [mm]\int dz_{e}\int dz_{h} \phi^{\*}(z_{e})\phi^{\*}(z_{h})[/mm]
>  
> Dann folgt:
>
> [mm]\left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,h}+E_{e}+E_{h}+\int dz_{e}\int dz_{h} \phi^{\*}(z_{e})\phi^{\*}(z_{h})V(\vec{r}_{e}-\vec{r}_{h})\right]\phi_{e}(z_{e})\phi_{h}(z_{h})\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\eta(\vec{\rho_{e}},\vec{\rho_{h}})[/mm]

Stimmt nicht ganz:

[mm]\left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,h}+E_{e}+E_{h}+\left(\int dz_{e}\int dz_{h} \phi^{\*}(z_{e})\phi^{\*}(z_{h})V(\vec{r}_{e}-\vec{r}_{h})\phi_{e}(z_{e})\phi_{h}(z_{h})\right)\right]\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\eta(\vec{\rho_{e}},\vec{\rho_{h}})[/mm]

> Das ist denke ich klar. Auf der linken Seite der Gleichung  
> geht das Integral überall vorbei, außer bei
> [mm]V(\vec{r}_{e}-\vec{r}_{h}),[/mm] weil dies noch von z abhängt,
> Auf der rechten Seite steht nur noch
> [mm]E\eta(\vec{\rho_{e}},\vec{\rho_{h}}),[/mm] weil auf Grund der
> Normierung gilt:
>  
> [mm]\int dz_{e}\int dz_{h} |\phi(z_{e})|^{2}|\phi(z_{h})|^{2}=1[/mm]
>  
> Die Motivation besteht nun darin, dass dieses Integral auf
> der linken Seite analytisch nur schwer Lösbar ist und
> deshalb betrachtet man die Elektronen getrennt von den
> Löcher! Ist das soweit richtig?

Ich glaube nicht, das "es ist zu schwierig, dies auszurechnen" eine gute physikalsiche Motivation ist. Ich verstehe auch noch nicht, was du damit meinst, das Elektronen getrennt von Löchern betrachtet werden.

Ein Hinweis noch: das Integral in runden Klammern ergibt eine Potentialfunktion, die nur von der Differenz [mm] $(\rho_e-\rho_h)$ [/mm] abhängt, sodass am Schluss diese Schrödingergleichung dasteht:

  [mm]\left[-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,e}-\frac{\hbar^{2}}{2m_{e}}\Delta_{\rho,h}+E_{e}+E_{h}+\tilde V(\rho_e-\rho_h)\right]\eta(\vec{\rho_{e}},\vec{\rho_{h}})=E\eta(\vec{\rho_{e}},\vec{\rho_{h}})[/mm] .


Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de