www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Haupsatzes der Diferentialrech
Haupsatzes der Diferentialrech < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Haupsatzes der Diferentialrech: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Mi 27.12.2006
Autor: nix19

Aufgabe
Zeigen Sie durch ein Gegenbeispiel, dass die Aussage des Haupsatzes der Differential- und Integralrechnung nicht erhalten bleiben, wenn die Funktion $f : [a; [mm] b]\to\IR$ [/mm] integrierbar, aber an einer Stelle [mm] x_0 [/mm] aus (a; b) nicht stetig ist.

Hallo

ich weiß nicht wie ich die Aufgabe rechnen soll, kann mir da einer helfen?

        
Bezug
Haupsatzes der Diferentialrech: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 14:25 Mi 27.12.2006
Autor: tausi

Hallo!

Betrachte die folgende Funktion:

[mm] f(x)=\begin{cases} 1, & \mbox{für } x \in (0;0,5) \\ 2, & \mbox{für } x \in (0,5;1) \end{cases} [/mm]

Fläche unter der Funktion: 1*0,5+2*0,5=1,5

[mm] F(x)=\begin{cases} x, & \mbox{für } x \in (0;0,5) \\ 2x, & \mbox{für } x \in (0,5;1) \end{cases} [/mm]

F(1)-F(0)=2-0=2

Damit gilt der Hauptsatz der Differential und Integralrechnung nicht!

Tausi


Bezug
                
Bezug
Haupsatzes der Diferentialrech: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 16:08 Mi 27.12.2006
Autor: SEcki


> [mm]F(x)=\begin{cases} x, & \mbox{für } x \in (0;0,5) \\ 2x, & \mbox{für } x \in (0,5;1) \end{cases}[/mm]

Und warum solltes das die Stammfunktion sein? Bzw.: was soll eine Stammfunktion sein? Die ist in 0,5 unstetig. Du kannst das F ja mal stetig machen, in dem du eine der beiden Seiten so anpasst, dass die Funktionen in 0,5 übereinstimmen - und die Fläche läßt sich dann durchaus so berechnen ... aber diese Funktion ist halt nicht diffbar in 0,5. Kommt halt drauf an, wie man den HDI formuliert hat ...

SEcki

Bezug
        
Bezug
Haupsatzes der Diferentialrech: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Mi 27.12.2006
Autor: nix19

wie geht die Aufgabe denn jetzt?

Bezug
                
Bezug
Haupsatzes der Diferentialrech: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mi 27.12.2006
Autor: baufux

Hallo!

Schau dir doch mal die Signum-Funktion an. Als Stammfunktion dazu kann man die Betragsfunktion hernehmen, diese ist aber bekanntermaßen an der Stelle [mm]x_{0} = 0[/mm] nicht differenzierbar.

Also gilt:

[mm] \integral_{a}^{b}{sig(x) dx}=F(b)-F(a)=|b|-|a| [/mm]

Und sofern [mm]0 \in (a;b)[/mm] gilt:

[mm] F'(x) \not= f(x) [/mm], da [mm]F'(x)[/mm] an der Stelle [mm]x = 0[/mm] nicht existiert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de