www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Hauptachsentrafo
Hauptachsentrafo < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentrafo: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:46 Sa 11.05.2013
Autor: Lustique

Aufgabe
Schreiben Sie die quadratische Form
$f(x,y) = [mm] \alpha x^2 [/mm] - [mm] 2\sqrt{2}\alpha [/mm] xy, [mm] \quad \alpha \in \mathbb{R}$ [/mm]
in Matrixform. Benützen Sie dies um die folgenden Gleichung zu lösen,
$f(x,y) = 1$, indem Sie die dazugehörige Matrix diagonalisieren. Bitte wählen Sie die diagonalisierende Transformation so, daß sie eine eigentliche Drehung ist.

Hallo zusammen,
ich könnte zu dieser Aufgabe mal etwas Hilfe gebrauchen, da ich mir 1. nicht sicher bin, ob mein Rechenweg so richtig ist, und 2. ob ich damit schon fertig bin:

Zuallererst lässt sich ja schließen, dass [mm] $\alpha \neq [/mm] 0$. Dann habe ich die Gleichung umgeschrieben:

$(x, [mm] y)\cdot \pmat{\alpha & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & 0} \cdot \vektor{x \\ y}=\alpha x^2 [/mm] - [mm] 2\sqrt{2}\alpha [/mm] xy$.

Ich habe dann die Eigenwerte von [mm] $\mathbf{A}:=\pmat{\alpha & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & 0}$ [/mm] bestimmt [mm] ($\lambda_1=2\alpha, \quad \lambda_2=-\alpha$) [/mm] , und dazu dann die Eigenvektoren [mm] $v_1=\vektor{-\sqrt{2}\\1}, \quad v_2=\vektor{1\\ \sqrt{2}}$, [/mm] und normiert: [mm] $\widehat{v_1}=\frac{1}{\sqrt{3}}\vektor{-\sqrt{2}\\1}, \quad \widehat{v_2}=\frac{1}{\sqrt{3}}\vektor{1\\ \sqrt{2}}$. [/mm]


Damit habe ich dann [mm] $\mathbf{A}$ [/mm] diagonalisiert mit [mm] $\mathbf{A'}=\frac{1}{\sqrt{3}}\pmat{2\alpha & 0\\ 0 & -\alpha}$ [/mm] und [mm] $\mathbf{T}=\mathbf{T}^t=\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}}$ [/mm] als diagonalisierende Trafo, die ja offensichtlich von der Form ist, wie gewünscht (ich habe noch das Vorzeichen vom ersten Eigenvektor geändert, damit es passt).

Jetzt kann ich ja $(x, [mm] y)^t$ [/mm] transformieren und komme damit auf folgende Gleichung:


$(x', [mm] y')\cdot \pmat{2\alpha & 0\\ 0 & -\alpha} \cdot \vektor{x' \\ y'}=2\alpha {x'}^2-\alpha {y'}^2$. [/mm]

Setzt man dann jetzt einfach [mm] $2\alpha {x'}^2-\alpha {y'}^2=1$? [/mm] Dann wäre ja bspw. [mm] $x'=\pm \sqrt{\frac{1+\alpha {y'}^2}{2\alpha}}$. [/mm]

Bin ich damit jetzt fertig, oder muss ich noch mal rücktransformieren? Ist der Rechenweg so überhaupt richtig?

Danke schon mal im Voraus für eure Hilfe!

        
Bezug
Hauptachsentrafo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:17 So 12.05.2013
Autor: angela.h.b.


> Setzt man dann jetzt einfach [mm]2\alpha {x'}^2-\alpha {y'}^2=1[/mm]?
> Dann wäre ja bspw. [mm]x'=\pm \sqrt{\frac{1+\alpha {y'}^2}{2\alpha}}[/mm].

Hallo,

nachgerechnet habe ich nichts.
Dein Tun sieht vernünftig aus für mich.

>

> Bin ich damit jetzt fertig, oder muss ich noch mal
> rücktransformieren?

Rücktransformieren.
Dann kannst Du ja durch Einsetzen probieren, ob Dein Ergebnis stimmt.

LG Angela

Bezug
                
Bezug
Hauptachsentrafo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 So 12.05.2013
Autor: Lustique


>
> > Setzt man dann jetzt einfach [mm]2\alpha {x'}^2-\alpha {y'}^2=1[/mm]?
>  
> > Dann wäre ja bspw. [mm]x'=\pm \sqrt{\frac{1+\alpha {y'}^2}{2\alpha}}[/mm].
>  
> Hallo,
>  
> nachgerechnet habe ich nichts.
>  Dein Tun sieht vernünftig aus für mich.
>  
> >
>  > Bin ich damit jetzt fertig, oder muss ich noch mal

>  > rücktransformieren?

>  
> Rücktransformieren.
>  Dann kannst Du ja durch Einsetzen probieren, ob Dein
> Ergebnis stimmt.
>  
> LG Angela

Hallo Angela, danke fürs Anschauen. Ich werde mich mal daran probieren.

Bezug
        
Bezug
Hauptachsentrafo: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 So 12.05.2013
Autor: MathePower

Hallo Lustique,

> Schreiben Sie die quadratische Form
>  [mm]f(x,y) = \alpha x^2 - 2\sqrt{2}\alpha xy, \quad \alpha \in \mathbb{R}[/mm]
>  
> in Matrixform. Benützen Sie dies um die folgenden
> Gleichung zu lösen,
>  [mm]f(x,y) = 1[/mm], indem Sie die dazugehörige Matrix
> diagonalisieren. Bitte wählen Sie die diagonalisierende
> Transformation so, daß sie eine eigentliche Drehung ist.
>  Hallo zusammen,
> ich könnte zu dieser Aufgabe mal etwas Hilfe gebrauchen,
> da ich mir 1. nicht sicher bin, ob mein Rechenweg so
> richtig ist, und 2. ob ich damit schon fertig bin:
>
> Zuallererst lässt sich ja schließen, dass [mm]\alpha \neq 0[/mm].
> Dann habe ich die Gleichung umgeschrieben:
>
> [mm](x, y)\cdot \pmat{\alpha & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & 0} \cdot \vektor{x \\ y}=\alpha x^2 - 2\sqrt{2}\alpha xy[/mm].
>
> Ich habe dann die Eigenwerte von [mm]\mathbf{A}:=\pmat{\alpha & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & 0}[/mm]
> bestimmt ([mm]\lambda_1=2\alpha, \quad \lambda_2=-\alpha[/mm]) , und
> dazu dann die Eigenvektoren [mm]v_1=\vektor{-\sqrt{2}\\1}, \quad v_2=\vektor{1\\ \sqrt{2}}[/mm],
> und normiert:
> [mm]\widehat{v_1}=\frac{1}{\sqrt{3}}\vektor{-\sqrt{2}\\1}, \quad \widehat{v_2}=\frac{1}{\sqrt{3}}\vektor{1\\ \sqrt{2}}[/mm].
>
>
> Damit habe ich dann [mm]\mathbf{A}[/mm] diagonalisiert mit
> [mm]\mathbf{A'}=\frac{1}{\sqrt{3}}\pmat{2\alpha & 0\\ 0 & -\alpha}[/mm]
> und
> [mm]\mathbf{T}=\mathbf{T}^t=\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}}[/mm]
> als diagonalisierende Trafo, die ja offensichtlich von der
> Form ist, wie gewünscht (ich habe noch das Vorzeichen vom
> ersten Eigenvektor geändert, damit es passt).
>
> Jetzt kann ich ja [mm](x, y)^t[/mm] transformieren und komme damit
> auf folgende Gleichung:
>
>
> [mm](x', y')\cdot \pmat{2\alpha & 0\\ 0 & -\alpha} \cdot \vektor{x' \\ y'}=2\alpha {x'}^2-\alpha {y'}^2[/mm].
>
> Setzt man dann jetzt einfach [mm]2\alpha {x'}^2-\alpha {y'}^2=1[/mm]?


Ja.


> Dann wäre ja bspw. [mm]x'=\pm \sqrt{\frac{1+\alpha {y'}^2}{2\alpha}}[/mm].

>


Die Gleichungsform läßt sich doch als Hyperbelgleichung deuten.
Welche Punkte diese Gleichung erfüllen ist bekannt.


> Bin ich damit jetzt fertig, oder muss ich noch mal
> rücktransformieren? Ist der Rechenweg so überhaupt
> richtig?
>


Um auf die Lösungen x,y zu kommen ist eine Rücktransformation nötig.


> Danke schon mal im Voraus für eure Hilfe!


Gruss
MathePower

Bezug
                
Bezug
Hauptachsentrafo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 12.05.2013
Autor: Lustique

Hallo MathePower, danke für deine Hilfe!

> Um auf die Lösungen x,y zu kommen ist eine
> Rücktransformation nötig.

wie würde das in diesem Fall aussehen?

[mm] $\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{x'\\y'}=\vektor{x\\y}$ [/mm] und dann $ [mm] x'=\pm \sqrt{\frac{1+\alpha {y'}^2}{2\alpha}} [/mm] $ einsetzen?

Bezug
                        
Bezug
Hauptachsentrafo: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 So 12.05.2013
Autor: MathePower

Hallo Lustique,

> Hallo MathePower, danke für deine Hilfe!
>  
> > Um auf die Lösungen x,y zu kommen ist eine
> > Rücktransformation nötig.
>  
> wie würde das in diesem Fall aussehen?
>
> [mm]\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{x'\\y'}=\vektor{x\\y}[/mm]
> und dann [mm]x'=\pm \sqrt{\frac{1+\alpha {y'}^2}{2\alpha}}[/mm]
> einsetzen?


Die Lösungen der Gleichung

[mm]2\alpha {x'}^2-\alpha {y'}^2=1[/mm]

sind doch für [mm]\alpha > 0[/mm]:

[mm]x'=\bruch{1}{\wurzel{2\alpha}}*\cosh\left(t\right), \ t \in \IR[/mm]

[mm]y'=\bruch{1}{\wurzel{\alpha}}*\sinh\left(t\right), \ t \in \IR[/mm]

Dies ist dann für den Vektor [mm]\vektor{x'\\y'}[/mm] einzusetzen.


Gruss
MathePower

Bezug
                                
Bezug
Hauptachsentrafo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 12.05.2013
Autor: Lustique

Hallo MathePower, danke für deine Antwort!

> Die Lösungen der Gleichung
>  
> [mm]2\alpha {x'}^2-\alpha {y'}^2=1[/mm]
>  
> sind doch für [mm]\alpha > 0[/mm]:
>  
> [mm]x'=\bruch{1}{\wurzel{2\alpha}}*\cosh\left(t\right), \ t \in \IR[/mm]
>  
> [mm]y'=\bruch{1}{\wurzel{\alpha}}*\sinh\left(t\right), \ t \in \IR[/mm]

Diese Identität sehe ich ehrlich gesagt zum ersten Mal. Macht man sowas normalerweise in einer LA-Vorlesung oder sollte man das sehen? Diese Aufgabe stammt nämlich aus einer Rechenmethoden-Vorlesung für Physiker (da wurde sowas natürlich nicht behandelt), und meine LA-Vorlesung ist und war etwas "unorthodox".

> Dies ist dann für den Vektor [mm]\vektor{x'\\y'}[/mm] einzusetzen.

Ist denn dann meine Rücktransformation richtig, also

$ [mm] \frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{x'\\y'}=\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{\bruch{1}{\wurzel{2\alpha}}*\cosh\left(t\right)\\\bruch{1}{\wurzel{\alpha}}*\sinh\left(t\right)}=\vektor{x\\y} [/mm] $?

Bezug
                                        
Bezug
Hauptachsentrafo: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 So 12.05.2013
Autor: MathePower

Hallo Lustique,

> Hallo MathePower, danke für deine Antwort!
>  
> > Die Lösungen der Gleichung
>  >  
> > [mm]2\alpha {x'}^2-\alpha {y'}^2=1[/mm]
>  >  
> > sind doch für [mm]\alpha > 0[/mm]:
>  >  
> > [mm]x'=\bruch{1}{\wurzel{2\alpha}}*\cosh\left(t\right), \ t \in \IR[/mm]
>  
> >  

> > [mm]y'=\bruch{1}{\wurzel{\alpha}}*\sinh\left(t\right), \ t \in \IR[/mm]
>  
> Diese Identität sehe ich ehrlich gesagt zum ersten Mal.
> Macht man sowas normalerweise in einer LA-Vorlesung oder
> sollte man das sehen? Diese Aufgabe stammt nämlich aus
> einer Rechenmethoden-Vorlesung für Physiker (da wurde
> sowas natürlich nicht behandelt), und meine LA-Vorlesung
> ist und war etwas "unorthodox".
>


Nun, das Additionstheorem

[mm]\cosh^{2}\left(t\right)-\sinh^{2}\left(t\right)=1[/mm]

fällt in den Bereich einer Analysis-Vorlesung.


> > Dies ist dann für den Vektor [mm]\vektor{x'\\y'}[/mm] einzusetzen.
>  
> Ist denn dann meine Rücktransformation richtig, also
>
> [mm]\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{x'\\y'}=\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{\bruch{1}{\wurzel{2\alpha}}*\cosh\left(t\right)\\\bruch{1}{\wurzel{\alpha}}*\sinh\left(t\right)}=\vektor{x\\y} [/mm]?


Ja.


Gruss
MathePower

Bezug
                                                
Bezug
Hauptachsentrafo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 So 12.05.2013
Autor: Lustique

Hallo MathePower, danke für deine Antwort!

> Nun, das Additionstheorem
>  
> [mm]\cosh^{2}\left(t\right)-\sinh^{2}\left(t\right)=1[/mm]
>  
> fällt in den Bereich einer Analysis-Vorlesung.

Und das ist auch tatsächlich schon länger bekannt, aber leider nicht gerade abrufbereit... Danke, dass du mich daran erinnerst. :)

> > > Dies ist dann für den Vektor [mm]\vektor{x'\\y'}[/mm] einzusetzen.
>  >  
> > Ist denn dann meine Rücktransformation richtig, also
> >
> > [mm]\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{x'\\y'}=\frac{1}{\sqrt{3}}\pmat{\sqrt{2} & 1\\ -1 & \sqrt{2}} \cdot \vektor{\bruch{1}{\wurzel{2\alpha}}*\cosh\left(t\right)\\\bruch{1}{\wurzel{\alpha}}*\sinh\left(t\right)}=\vektor{x\\y} [/mm]?
>
>
> Ja.
>  
>
> Gruss
>  MathePower

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de