Hauptachsentransformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:23 Di 16.09.2008 | Autor: | algieba |
Hallo
Ich wollte mal die Hauptachsentransformation nachvollziehen, die in Wikipedia am Rand als Bilderserie gezeigt wird (http://de.wikipedia.org/wiki/Hauptachsentransformation) (ziemlich weit oben, der Kegelschnitt am rechten Rand) Die Gleichung lautet: [mm]x^2-4xy+y^2+10x+y+12=0[/mm]
Ich habe hier nun die Drehung durchgeführt (nach der Anleitung in Wikipedia) und komme nun auf [mm] Q = \pmat{ \bruch{1}{\wurzel{2}} & -\bruch{1}{\wurzel{2}} \\ \bruch{1}{\wurzel{2}} & \bruch{1}{\wurzel{2}} } [/mm] und [mm] D = \pmat{ -1 & 0 \\ 0 & 3 }[/mm] was ja ein Zeichen dafür ist, dass es stimmt, da D ja Diagonalgestalt haben soll, und auf der Diagonalen die Eigenwerte von A stehen sollen, was bei mir zutrifft.
Jetzt weiß ich aber nicht weiter. Wikipedia sagt nun, man soll quadratische Ergänzung machen, um dann auf die Gleichung [mm] -\bruch{3}{25} x^2 + \bruch{1}{25} y^2 -1 = 0 [/mm] zu kommen. (zwei Bilder unter der ursprünglichen Funktion)
Wie macht man denn das?
Vielen Dank im Voraus
|
|
|
|
Hallo algieba,
> Hallo
>
> Ich wollte mal die Hauptachsentransformation
> nachvollziehen, die in Wikipedia am Rand als Bilderserie
> gezeigt wird
> (http://de.wikipedia.org/wiki/Hauptachsentransformation)
> (ziemlich weit oben, der Kegelschnitt am rechten Rand) Die
> Gleichung lautet: [mm]x^2-4xy+y^2+10x+y+12=0[/mm]
>
> Ich habe hier nun die Drehung durchgeführt (nach der
> Anleitung in Wikipedia) und komme nun auf [mm]Q = \pmat{ \bruch{1}{\wurzel{2}} & -\bruch{1}{\wurzel{2}} \\ \bruch{1}{\wurzel{2}} & \bruch{1}{\wurzel{2}} }[/mm]
> und [mm]D = \pmat{ -1 & 0 \\ 0 & 3 }[/mm] was ja ein Zeichen dafür
> ist, dass es stimmt, da D ja Diagonalgestalt haben soll,
> und auf der Diagonalen die Eigenwerte von A stehen sollen,
> was bei mir zutrifft.
>
> Jetzt weiß ich aber nicht weiter. Wikipedia sagt nun, man
> soll quadratische Ergänzung machen, um dann auf die
> Gleichung [mm]-\bruch{3}{25} x^2 + \bruch{1}{25} y^2 -1 = 0[/mm] zu
> kommen. (zwei Bilder unter der ursprünglichen Funktion)
> Wie macht man denn das?
Siehe quadratische Ergänzung - Mathebank bzw.
quadratische Ergänzung - Wikipedia.
> Vielen Dank im Voraus
>
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Mi 17.09.2008 | Autor: | algieba |
Danke für die Antwort.
Mir ist das Prinzip der quadratischen Ergänzung schon klar, nur ich weiß nicht, wie ich es auf diese Aufgabe anwenden kann. Ich habe ja die Gleichung
[mm] x^TQDQ^Tx+b^TQQ^Tx+\mu=y^TDy+c^Ty+\mu=0 ~~~~(QQ^T=1)[/mm]
Mein Problem ist nun, dass ich [mm]c^T[/mm] und [mm]\mu[/mm] nicht rausbekomme. Bei Wikipedia steht, dass man das mit quadratischer Ergänzung macht, nur ich weiß nicht wie ich das hier anwenden soll.
|
|
|
|
|
> Danke für die Antwort.
> Mir ist das Prinzip der quadratischen Ergänzung schon
> klar, nur ich weiß nicht, wie ich es auf diese Aufgabe
> anwenden kann. Ich habe ja die Gleichung
>
> [mm]x^TQDQ^Tx+b^TQQ^Tx+\mu=y^TDy+c^Ty+\mu=0 ~~~~(QQ^T=1)[/mm]
>
> Mein Problem ist nun, dass ich [mm]c^T[/mm] und [mm]\mu[/mm] nicht
> rausbekomme. Bei Wikipedia steht, dass man das mit
> quadratischer Ergänzung macht, nur ich weiß nicht wie ich
> das hier anwenden soll.
Hallo,
ich beziehe mich auf die Bezeichnungen im Wikipedia-Artikel.
Du warst doch gestartet mit [mm] 3x_1^2 [/mm] − [mm] x_2^2 [/mm] − [mm] 9x_1 [/mm] + [mm] 11x_2 [/mm] + 12 = 0 [mm] =\pmat{x_1&x_2}\pmat{ 3 & 0 \\ 0 & -1 }\vektor{x_1\\x_2} +\pmat{-9&11}\vektor{x_1\\x_2} [/mm] + 12.
Dein [mm] b^t [/mm] ist [mm] \pmat{-9&11}, [/mm] und das [mm] \mu=12.
[/mm]
[mm] c^T [/mm] ist b^tQ.
Wenn Du [mm] y^TDy+c^Ty+\mu=0 [/mm] mit Zahlen und [mm] y_i [/mm] schreibst, was steht denn dann da? Nun den teil mit [mm] y_1 [/mm] und den mit [mm] y_2 [/mm] quadratisch ergänzen.
Gruß v. Angela
|
|
|
|