www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Hauptachsentransformation
Hauptachsentransformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: quadratische Ergänzung
Status: (Frage) beantwortet Status 
Datum: 15:23 Di 16.09.2008
Autor: algieba

Hallo

Ich wollte mal die Hauptachsentransformation nachvollziehen, die in Wikipedia am Rand als Bilderserie gezeigt wird (http://de.wikipedia.org/wiki/Hauptachsentransformation) (ziemlich weit oben, der Kegelschnitt am rechten Rand) Die Gleichung lautet: [mm]x^2-4xy+y^2+10x+y+12=0[/mm]

Ich habe hier nun die Drehung durchgeführt (nach der Anleitung in Wikipedia) und komme nun auf [mm] Q = \pmat{ \bruch{1}{\wurzel{2}} & -\bruch{1}{\wurzel{2}} \\ \bruch{1}{\wurzel{2}} & \bruch{1}{\wurzel{2}} } [/mm] und [mm] D = \pmat{ -1 & 0 \\ 0 & 3 }[/mm] was ja ein Zeichen dafür ist, dass es stimmt, da D ja Diagonalgestalt haben soll, und auf der Diagonalen die Eigenwerte von A stehen sollen, was bei mir zutrifft.

Jetzt weiß ich aber nicht weiter. Wikipedia sagt nun, man soll quadratische Ergänzung machen, um dann auf die Gleichung [mm] -\bruch{3}{25} x^2 + \bruch{1}{25} y^2 -1 = 0 [/mm] zu kommen. (zwei Bilder unter der ursprünglichen Funktion)
Wie macht man denn das?
Vielen Dank im Voraus


        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 16.09.2008
Autor: MathePower

Hallo algieba,

> Hallo
>  
> Ich wollte mal die Hauptachsentransformation
> nachvollziehen, die in Wikipedia am Rand als Bilderserie
> gezeigt wird
> (http://de.wikipedia.org/wiki/Hauptachsentransformation)
> (ziemlich weit oben, der Kegelschnitt am rechten Rand) Die
> Gleichung lautet: [mm]x^2-4xy+y^2+10x+y+12=0[/mm]
>  
> Ich habe hier nun die Drehung durchgeführt (nach der
> Anleitung in Wikipedia) und komme nun auf [mm]Q = \pmat{ \bruch{1}{\wurzel{2}} & -\bruch{1}{\wurzel{2}} \\ \bruch{1}{\wurzel{2}} & \bruch{1}{\wurzel{2}} }[/mm]
> und [mm]D = \pmat{ -1 & 0 \\ 0 & 3 }[/mm] was ja ein Zeichen dafür
> ist, dass es stimmt, da D ja Diagonalgestalt haben soll,
> und auf der Diagonalen die Eigenwerte von A stehen sollen,
> was bei mir zutrifft.
>  
> Jetzt weiß ich aber nicht weiter. Wikipedia sagt nun, man
> soll quadratische Ergänzung machen, um dann auf die
> Gleichung [mm]-\bruch{3}{25} x^2 + \bruch{1}{25} y^2 -1 = 0[/mm] zu
> kommen. (zwei Bilder unter der ursprünglichen Funktion)
>  Wie macht man denn das?

Siehe quadratische Ergänzung - Mathebank bzw.
[]quadratische Ergänzung - Wikipedia.


>  Vielen Dank im Voraus
>  


Gruß
MathePower

Bezug
                
Bezug
Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 17.09.2008
Autor: algieba

Danke für die Antwort.
Mir ist das Prinzip der quadratischen Ergänzung schon klar, nur ich weiß nicht, wie ich es auf diese Aufgabe anwenden kann. Ich habe ja die Gleichung

[mm] x^TQDQ^Tx+b^TQQ^Tx+\mu=y^TDy+c^Ty+\mu=0 ~~~~(QQ^T=1)[/mm]

Mein Problem ist nun, dass ich [mm]c^T[/mm] und [mm]\mu[/mm] nicht rausbekomme. Bei Wikipedia steht, dass man das mit quadratischer Ergänzung macht, nur ich weiß nicht wie ich das hier anwenden soll.

Bezug
                        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Do 18.09.2008
Autor: angela.h.b.


> Danke für die Antwort.
>  Mir ist das Prinzip der quadratischen Ergänzung schon
> klar, nur ich weiß nicht, wie ich es auf diese Aufgabe
> anwenden kann. Ich habe ja die Gleichung
>  
> [mm]x^TQDQ^Tx+b^TQQ^Tx+\mu=y^TDy+c^Ty+\mu=0 ~~~~(QQ^T=1)[/mm]
>
> Mein Problem ist nun, dass ich [mm]c^T[/mm] und [mm]\mu[/mm] nicht
> rausbekomme. Bei Wikipedia steht, dass man das mit
> quadratischer Ergänzung macht, nur ich weiß nicht wie ich
> das hier anwenden soll.

Hallo,

ich beziehe mich auf die Bezeichnungen im Wikipedia-Artikel.

Du warst doch gestartet mit [mm] 3x_1^2 [/mm] − [mm] x_2^2 [/mm] − [mm] 9x_1 [/mm] + [mm] 11x_2 [/mm] + 12 = 0 [mm] =\pmat{x_1&x_2}\pmat{ 3 & 0 \\ 0 & -1 }\vektor{x_1\\x_2} +\pmat{-9&11}\vektor{x_1\\x_2} [/mm] + 12.

Dein [mm] b^t [/mm] ist [mm] \pmat{-9&11}, [/mm] und das [mm] \mu=12. [/mm]

[mm] c^T [/mm] ist b^tQ.

Wenn Du [mm] y^TDy+c^Ty+\mu=0 [/mm] mit Zahlen und [mm] y_i [/mm] schreibst, was steht denn dann da? Nun den teil mit [mm] y_1 [/mm] und den mit [mm] y_2 [/mm] quadratisch ergänzen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de