www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Hauptachsentransformation
Hauptachsentransformation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:28 Di 16.08.2005
Autor: Britta82

Hi,

ich soll für die Matrix [mm] \pmat{ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 } [/mm] die Hauptachsentransformation ausführen, also eine ONB finden und dann die Transformationsmatrix aufstellen.

Als erstes habe ich das char. Polynom ausgerechnet, daß für mich ist:
-(x-1)²(x-4)

Dann habe ich die zugehörigen Eigenvektoren ausgerechnet

für (A,4) ist das dann [mm] v_{3} [/mm] = [mm] \vektor{1 \\ 1 \\ 1} [/mm]

für (A,1) erhalte ich  z.B. [mm] \vektor{1 \\ -1 \\ 0} [/mm] also [mm] v_{1} [/mm] und als [mm] v_{2} [/mm] erhalte ich z.B. [mm] \vektor{1 \\ 0 \\ 1} [/mm]

Ich bin mir nicht ganz sicher ob es bis dahin richtig ist.

Danach habe ich Gram-Schmidt angewendet:

[mm] w_{1} [/mm] = [mm] \vektor{\bruch{1}{ \wurzel{2}} \\ \bruch{-1}{ \wurzel{2}} \\ 0} [/mm]

Dann rechne ich [mm] w_{2} [/mm] aus und erhalte [mm] \vektor{\bruch{1}{ \wurzel{6}} \\ \bruch{1}{ \wurzel{6}} \\ \bruch{2}{ \wurzel{6}}} [/mm]

und als letztes erhalte ich [mm] w_{3}= \vektor{\bruch{1}{ \wurzel{24}} \\ \bruch{1}{ \wurzel{24}} \\ \bruch{-1}{ \wurzel{24}}} [/mm]

die Transformationsmatrix ist ja dann einfach die Vektoren als Spalten aufgefasst, das ist einfach, aber mir kommt die wurzel{24} sehr merkwürdig vor, also bitte ich um eure hilfe

Danke im Vorraus

Britta

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Di 16.08.2005
Autor: Julius

Hallo Britta!

Also, was mir direkt auffällt:

> ich soll für die Matrix [mm]\pmat{ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 }[/mm]
> die Hauptachsentransformation ausführen, also eine ONB
> finden und dann die Transformationsmatrix aufstellen.
>  
> Als erstes habe ich das char. Polynom ausgerechnet, daß für
> mich ist:
> -(x-1)²(x-4)
>  
> Dann habe ich die zugehörigen Eigenvektoren ausgerechnet
>  
> für (A,4) ist das dann [mm]v_{3}[/mm] = [mm]\vektor{1 \\ 1 \\ 1}[/mm]
>  
> für (A,1) erhalte ich  z.B. [mm]\vektor{1 \\ -1 \\ 0}[/mm] also
> [mm]v_{1}[/mm] und als [mm]v_{2}[/mm] erhalte ich z.B. [mm]\vektor{1 \\ 0 \\ 1}[/mm]

[mm] $v_2$ [/mm] stimmt nicht. Es muss z.B. [mm] $v_2 [/mm] = [mm] \pmat{1 \\ 0 \\ -1}$ [/mm] heißen.

Klappt es damit besser?

Viele  Grüße
Julius


Bezug
                
Bezug
Hauptachsentransformation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:00 Di 16.08.2005
Autor: Britta82

Hallo Julius

Danke für die schnelle Antwort,
also an [mm] w_{1} [/mm] und [mm] w_{2} [/mm] ändert das nichts (jedenfalls nicht bei mir) aber [mm] w_{3} [/mm] ist dann =  [mm] \vektor{\bruch{4}{7} \\ \bruch{2}{7} \\ \bruch{1}{7} } [/mm]

Kann das sein? Scheint mir zu einfach

Danke

Britta

Bezug
                        
Bezug
Hauptachsentransformation: Julius hat Recht
Status: (Antwort) fertig Status 
Datum: 19:20 Di 16.08.2005
Autor: MathePower

Hallo Britta,

> Hallo Julius
>  
> Danke für die schnelle Antwort,
> also an [mm]w_{1}[/mm] und [mm]w_{2}[/mm] ändert das nichts (jedenfalls nicht
> bei mir) aber [mm]w_{3}[/mm] ist dann =  [mm]\vektor{\bruch{4}{7} \\ \bruch{2}{7} \\ \bruch{1}{7} }[/mm]
>  
> Kann das sein? Scheint mir zu einfach

nach dem was Julius geschrieben hat, sind die Vektoren [mm]w_{1}[/mm] und [mm]w_{3}[/mm] bzw. [mm]w_{2}[/mm] und [mm]w_{3}[/mm] orthogonal zueinander.

Die Vektoren [mm]w_{1}[/mm] und [mm]w_{2}[/mm] sind aber nicht orthogonal zueinander. Daher ist hier noch ein orthogonaler Vektor zu bestimmen.

Damit hast Du dann ein ON-Basis.

Baust Du dann die so erhaltenen Vektoren zusammen ergibt das die Transformationsmatrix.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de