www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Hauptideal
Hauptideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 So 09.12.2012
Autor: AntonK

Aufgabe
Dagegen ist z. B. der Polynomring [mm] \mathbb{Z}[X] [/mm] kein euklidischer Ring, da das Ideal (X,2) kein Hauptideal ist.

http://de.wikipedia.org/wiki/Euklidischer_Ring

Hallo Leute,

habe ein paar Verständnisprobleme bezüglich Euklidische Ringe.

1. Wie sieht (X,2) aus?
2. Warum ist dies kein Hauptideal, woran erkenne ich das?
3. Wenn ich keinen Hauptidealring habe, ist dann der Ring auch automatisch nicht euklidisch?

Danke schonmal!


        
Bezug
Hauptideal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 So 09.12.2012
Autor: Schadowmaster

moin,


> 1. Wie sieht (X,2) aus?

Du hast hier alle Vielfachen von $X$, alle Vielfachen von $2$ sowie alle Linearkombinationen davon. Das heißt also alles der Form $a*X+2b$ mit $a,b [mm] \in \IZ[X]$. [/mm]

>  2. Warum ist dies kein Hauptideal, woran erkenne ich das?

Der Ring [mm] $\IZ[X]$ [/mm] ist faktoriell. Wäre also $(X,2)=(a)$ für ein $a [mm] \in \IZ[X]$ [/mm] so folgt $a = ggT(X,2)=1$. Damit wäre aber [mm] $(X,2)=\IZ[X]$. [/mm] Dies ist jedoch nicht der Fall, denn als Beispiel $1 [mm] \in \IZ[X]$ [/mm] lässt sich nicht als $aX+2b$ wie oben schreiben.

>  3. Wenn ich keinen Hauptidealring habe, ist dann der Ring
> auch automatisch nicht euklidisch?

Ja, denn jeder euklidische Ring ist ein Hauptidealring.


lg

Schadow


Bezug
                
Bezug
Hauptideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 So 09.12.2012
Autor: AntonK

Das heißt, wenn ich ein Element in [mm] \IZ[X] [/mm] finde, dass sich nicht als Linearkombination bilden lässt, dann weiß ich, dass besagtes Ideal kein Hauptideal ist?


Warum ist dann aber z.B. [mm] 2\IZ [/mm] ein Hauptideal von [mm] \IZ [/mm] die 1 lässt sich ja dort nicht bilden.

Bezug
                        
Bezug
Hauptideal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 So 09.12.2012
Autor: Schadowmaster

Ein Ideal heißt Hauptideal, wenn es von einem einzigen Element erzeugt wird.
[mm] $2\IZ$ [/mm] ist somit ein Hauptideal, da es eben von der 2 erzeugt wird.
In unserem Fall ist es so, dass die Annahme $(X,2)$ sei ein Hauptideal, also $(X,2)=(a)$ für ein $a [mm] \in \IZ[X]$ [/mm] zum Widerspruch führt, da dann $1 [mm] \in [/mm] (X,2)$ gelten müsste.
Das ist aber nur in diesem speziellen Fall so, in anderen Fällen muss man dies ggf. anders zeigen oder widerlegen.

Bezug
                                
Bezug
Hauptideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 So 09.12.2012
Autor: AntonK

Hm, ich verstehe, ich argumentiere also damit, dass ich (X,2) nicht nur mit einem Element aus [mm] \IZ[X] [/mm] bauen kann, sehe ich das richtig?

Heißt das dann aber nicht auch, dass jedes Ideal von [mm] \IZ[X] [/mm] was sowohl aus einer Konstanten wie auch einem X besteht kein Hauptideal ist? (X,a) ist demnach nie ein Hauptideal oder?

Hauptideale wären dann nur entweder von der Form:

(X) oder (a) also eine Konstante oder?

Bezug
                                        
Bezug
Hauptideal: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Mo 10.12.2012
Autor: Schadowmaster

$(X,a)$ für ein $a [mm] \in \IZ$ [/mm] ist genau dann ein Hauptideal, wenn $a [mm] \in \{-1,0,1\}$ [/mm] gilt.

Es gibt aber durchaus noch andere Hauptideale als die von dir aufgezählten, zum Beispiel [mm] $(X^2+1)$. [/mm]

Bezug
                                                
Bezug
Hauptideal: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:31 Mo 10.12.2012
Autor: AntonK

[mm] (X^2+1) [/mm] ist ja von der Form:

[mm] a(X^2+1)=aX^2+a [/mm] wobei a [mm] \in \IZ[X] [/mm]

1. Element davon wäre z.B. [mm] X^3+X, [/mm] richtig? sprich a=X

2. Es ist ein Hauptideal, da [mm] X^2+1 \in \IZ[X] [/mm] liegt oder?

3. Kann ich so zeigen, dass dies ein Ideal ist?

a) Untergruppe [mm] (\IZ[X],0,+) [/mm]

(N) [mm] aX^2+a+0=aX^2+a [/mm] => neutrales Element ist enthalten
(I) [mm] aX^2+a-aX^2-a=0 [/mm] => Inverses enthalten
(P) [mm] (aX^2+a)+(bX^2+b)=(a+b)X^2+(a+b) [/mm] => Abgeschlossen

b) Für alle [mm] (aX^2+a) \in (X^2+1) [/mm] und alle b [mm] \in \IZ[X] [/mm] muss [mm] b(aX^2+a) \in (X^2+1) [/mm] liegen.

[mm] b(aX^2+a)=baX^2+ba [/mm] und das liegt offentsichtlich in [mm] (X^2+1). [/mm]

Ist das so korrekt?

Bezug
                                                        
Bezug
Hauptideal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 12.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de