www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Hauptidealring
Hauptidealring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptidealring: Frage
Status: (Frage) beantwortet Status 
Datum: 22:19 So 12.12.2004
Autor: Floyd

hallo!

Ich habe Probleme folgendes Bsp. zu lösen:
Sei R ein Hauptidealring. Dann gilt (A+B) [mm] \cap [/mm] (A+C)=A+(B [mm] \cap [/mm] C)
für beliebige Ideale A,B,C von R.

..wahrscheinlich muss man hier zwei Teilmengeninklusionen zeigen
(A+B) [mm] \cap [/mm] (A+C) [mm] \subseteq [/mm] A+(B [mm] \cap [/mm] C)
(A+B) [mm] \cap [/mm] (A+C) [mm] \supseteq [/mm] A+(B [mm] \cap [/mm] C)

aber ich komme einfach nicht drauf wie man diese Inklusionen beweist.
Laut Angabe weiß man ja nur dass jedes Ideale von einem Element aus R erzeugt wird (wobei R ein beliebiger Ring ist).

besten Dank im Voraus!
mfg
Floyd


        
Bezug
Hauptidealring: Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Mo 13.12.2004
Autor: Paula_Pichler

Ahoi,

wie ist denn die Operation "+" für Hauptideale definiert ?

Gruß - PP

Bezug
                
Bezug
Hauptidealring: Antwort auf Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mo 13.12.2004
Autor: Floyd

Ich kenne nur diese Def.:
Sei R ein Ring A,B  [mm] \subseteq [/mm] R. Dann definiert man
A+B={a+b | a [mm] \in [/mm] A , b [mm] \in [/mm] B}


Das Problem ist aber, dass es sich bei dem Bsp. um einen beliebigen Ring handelt und ein Hauptideal in einem beliebigen Ring hat die folgende Form:

(a) = {na + ra + as + [mm] \summe_{i=1}^{m}r_{i}as_{i} [/mm] | n [mm] \in \IZ, [/mm] r, s, [mm] r_{i}, s_{i} \in \IR, [/mm] m [mm] \in \IN [/mm] }


mfg
Floyd

Bezug
        
Bezug
Hauptidealring: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 17.12.2004
Autor: Julius

Hallo Floyd!

Du findest hier eine Antwort auf deine Frage. Führe also alles auf einen Nachweis über größte gemeinsame Teiler und kleinste gemeinsame Vielfache zurück, das ist am einfachsten! :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de