www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Hauptnenner
Hauptnenner < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptnenner: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Do 06.03.2014
Autor: Micha23

Hi, ich würde gerne wissen wieso man beim Bestimmen des Hauptnenners nicht quadrieren darf?

Also z.B.
[mm] \bruch{a}{(2b)^2}+\bruch{c}{b}\not=\bruch{a}{(2b)^2}+\bruch{(2c)^2}{(2b)^2} [/mm]

[mm] \bruch{a}{(2b)^2}+\bruch{c}{b}=\bruch{a}{(2b)^2}+\bruch{c}{b}*\bruch{2b}{2b}=\bruch{a}{(2b)^2}+\bruch{2cb}{(2b)^2} [/mm]

Mit 2 multiplizieren und Alles quadrieren ist falsch, die Lösung lautet natürlich mit 2 multiplizieren und mit b erweitern. Mich wundert nur, das ich nie gemerkt habe, dass das Quadrieren irgendwie nicht benutzt werden kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hauptnenner: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Do 06.03.2014
Autor: DieAcht

Hallo,


> Hi, ich würde gerne wissen wieso man beim Bestimmen des
> Hauptnenners nicht quadrieren darf?
>  
> Also z.B.
> [mm]\bruch{a}{(2b)^2}+\bruch{c}{b}\not=\bruch{a}{(2b)^2}+\bruch{(2c)^2}{(2b)^2}[/mm]
>  
> [mm]\bruch{a}{(2b)^2}+\bruch{c}{b}=\bruch{a}{(2b)^2}+\bruch{c}{b}*\bruch{2b}{2b}=\bruch{a}{(2b)^2}+\bruch{2cb}{(2b)^2}[/mm]
>  
> Mit 2 multiplizieren und Alles quadrieren ist falsch, die
> Lösung lautet natürlich mit 2 multiplizieren und mit b
> erweitern. Mich wundert nur, das ich nie gemerkt habe, dass
> das Quadrieren irgendwie nicht benutzt werden kann.

Es gibt hier gar kein Multiplizieren oder Quadrieren.
Es gibt nur das Erweitern mit Eins. Das erkennst du auch
daran, dass du nach dem Erweitern testen kannst ob du alles
richtig gemacht hast, in dem du kürzt.

Du erweiterst hier mit

      [mm] 1=\frac{2b}{2b}. [/mm]

Das bringt dich aber nicht weiter, denn du erhältst

      [mm] \frac{c}{d}*\frac{2b}{2b}=\frac{2bc}{2bd}. [/mm]

Beachte, dass der Nenner nicht das gewünschte ist!

Du musst hier erweitern mit

      [mm] \frac{2^2*b}{2^2*b}=1, [/mm]

denn damit erhältst du

      [mm] \bruch{a}{(2b)^2}+\bruch{c}{b}=\bruch{a}{(2b)^2}+(\bruch{c}{b}*\frac{2^2*b}{2^2*b})=\bruch{a}{(2b)^2}+\frac{4bc}{(2b)^2}=\frac{a+4bc}{(2b)^2}=\frac{a+4bc}{4b^2}. [/mm]


Gruß
DieAcht

Bezug
        
Bezug
Hauptnenner: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 06.03.2014
Autor: abakus


> Hi, ich würde gerne wissen wieso man beim Bestimmen des
> Hauptnenners nicht quadrieren darf?

>

> Also z.B.
> [mm]\bruch{a}{(2b)^2}+\bruch{c}{b}\not=\bruch{a}{(2b)^2}+\bruch{(2c)^2}{(2b)^2}[/mm]

>

> [mm]\bruch{a}{(2b)^2}+\bruch{c}{b}=\bruch{a}{(2b)^2}+\bruch{c}{b}*\bruch{2b}{2b}=\bruch{a}{(2b)^2}+\bruch{2cb}{(2b)^2}[/mm]

>

> Mit 2 multiplizieren und Alles quadrieren ist falsch, die
> Lösung lautet natürlich mit 2 multiplizieren und mit b
> erweitern. Mich wundert nur, das ich nie gemerkt habe, dass
> das Quadrieren irgendwie nicht benutzt werden kann.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
bleiben wir bei den Grundlagen: Erweitern bedeutet, Zähler und Nenner mit der gleichen Zahl zu multiplizieren. Dadurch ändert sich der Wert des Bruchs nicht (nur die Darstellungsform).
So ist eben [mm] $\frac{3}{10}$ [/mm] das selbe wie  [mm] $\frac{6}{20}$ . [/mm]
Wenn du hingegen den Bruch  [mm] $\frac{3}{10}$ [/mm] quadrierst, dann würdest du den Zähler mit 3 und den Nenner mit 10 multiplizieren, was den Wert des Bruchs selbstverständlich verändert.
Gruß Abakus

Bezug
        
Bezug
Hauptnenner: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Do 06.03.2014
Autor: Richie1401

Hallo micha,

> Hi, ich würde gerne wissen wieso man beim Bestimmen des
> Hauptnenners nicht quadrieren darf?

Man sieht dies doch auch ganz schnell an einem Beispiel mit konkreten Zahlen. Angenommen man dürfte Brüche quadirieren (in dem Sinne, dass sich der Wert nicht ändert), dann nehme man mal den Bruch:

   [mm] \frac{1}{2}\not=\frac{1^2}{2^2}=\frac{1}{4} [/mm]

Oder noch offensichtlich:

Mach den Spaß mal mit negativen Zahlen. Da würde man ja wieder positive Zahlen erhalten. Also man kommt schnell zur Einsicht, dass das nicht geht.

>  
> Also z.B.
> [mm]\bruch{a}{(2b)^2}+\bruch{c}{b}\not=\bruch{a}{(2b)^2}+\bruch{(2c)^2}{(2b)^2}[/mm]
>  
> [mm]\bruch{a}{(2b)^2}+\bruch{c}{b}=\bruch{a}{(2b)^2}+\bruch{c}{b}*\bruch{2b}{2b}=\bruch{a}{(2b)^2}+\bruch{2cb}{(2b)^2}[/mm]
>  
> Mit 2 multiplizieren und Alles quadrieren ist falsch, die
> Lösung lautet natürlich mit 2 multiplizieren und mit b
> erweitern. Mich wundert nur, das ich nie gemerkt habe, dass
> das Quadrieren irgendwie nicht benutzt werden kann.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de