www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Hausdorff-Topologie
Hausdorff-Topologie < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hausdorff-Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Fr 28.07.2006
Autor: Denny22

Hallo an alle,

meine Frage ist kurz und knapp:

Wie lautet die genaue Definition für eine "Hausdorff-Topologie"?

Ist Hausdorff-Topologie = Topologie, d.h. ist die Definition der Hausdorff Topologie gleich der Definition von Topologie?

Ich danke bereits für die Antwort.

DIESE FRAGE WURDE IN KEINEM ANDEREN FORUM GESTELLT. Nicht einmal google und wikipedia können bei dieser Frage weiterhelfen.

        
Bezug
Hausdorff-Topologie: doch in Wikipedia
Status: (Antwort) fertig Status 
Datum: 11:31 Fr 28.07.2006
Autor: statler

Hallo Denny,

schlag mal bei Wikipedia unter Trennungsaxiom nach, da wirst du auch den Hausdorff (und noch vieles mehr, was ich bis eben auch nicht wußte) wiederfinden.

Gruß aus HH-Hamburg
Dieter

Bezug
                
Bezug
Hausdorff-Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Fr 28.07.2006
Autor: Denny22

Hallo,

zunächst danke ich Dir für die sehr schnelle Antwort. Also ich habe mir die Seite angesehen.

Ist eine "Hausdorff-Topologie" nun ein topologischer Raum mit der Hausdorff-Eigenschaft (also ein "Hausdorff-Raum")?

Danke bereits für die Antwort.


Bezug
                        
Bezug
Hausdorff-Topologie: Hmm ...
Status: (Antwort) fertig Status 
Datum: 12:04 Fr 28.07.2006
Autor: statler

Hallo nochmal!

> Ist eine "Hausdorff-Topologie" nun ein topologischer Raum
> mit der Hausdorff-Eigenschaft (also ein "Hausdorff-Raum")?

Nach meinem Sprachempfinden kommt topologischen Räumen, in denen das erwähnte Trennungsaxiom gilt (grob: zu 2 verschiedenen Punkten gibt es disjunkte offene Umgebungen), die Eigenschaft 'hausdorffsch' zu.

Im Zweifelsfall wäre da für mich Bourbaki maßgebend, aber den habe ich gerade nicht zur Hand.

Es gibt meines Wissens keine Hausdorff-Topologie in dem Sinne, wie es eine Zariski-Topologie gibt. Man kann sehr wohl sagen ' [mm] \IR^{n} [/mm] mit der Zariski-Topologie', aber nicht ' [mm] \IR^{n} [/mm] mit der (oder einer) Hausdorff-Topologie'. [mm] \IR^{n} [/mm] mit der üblichen Topologie ist aber ein hausdorffscher Raum.

Gruß
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de