www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Helly's Theorem - Beweis
Helly's Theorem - Beweis < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Helly's Theorem - Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:05 Sa 29.05.2010
Autor: GodspeedYou

Aufgabe
Theorem (Helly):
Sei X ein (B)-Raum ueber [mm] \IK, {f_{1}, ... , f_{n}} \subset [/mm] X'
Seien [mm] a_{1} [/mm] ,..., [mm] a_{n} \in \IK [/mm] , sei [mm] \gamma [/mm] > 0

Folgendes Aussagen sind äquivalent:
(1) [mm] \forall \epsilon [/mm] > 0 [mm] \exists x_{\epsilon} \in [/mm] X  mit [mm] ||x_{\epsilon} [/mm] || [mm] \le \gamma [/mm] + [mm] \epsilon [/mm] ,  sodass [mm] \forall [/mm] i [mm] \in [/mm] {1,..,n} gilt: [mm] f_{i} x_{\epsilon} [/mm] = [mm] a_{i} [/mm]  

(2) [mm] \forall {b_{1} , ... , b_{n} } \subset \IK [/mm] gilt | [mm] \summe_{i=1}^{n} b_{i} a_{i} [/mm] |  [mm] \le [/mm] || [mm] \summe_{i=1}^{n} b_{i} f_{i} [/mm] || * [mm] \gamma [/mm]



Hallo,

Das Theorem oben stammt aus Yoshida's "Functional Analysis".

Ich verstehe die Richtung (2) => (1) nicht ganz, und zwar meint der Autor, dass es genüge, sich auf den Fall zu beschränken, dass die [mm] f_{i}s [/mm] linear unabhängig sind, und dass es im Fall, dass dies nicht gegeben ist, ausreicht, eine linear unabhängige Teilmenge dieser Menge zu betrachten.
Hier ist mir schleierhaft, wieso dies ausreicht.

Danke fuer alle Antworten.

Ich habe diese Frage in keinem weiterem Forum gestellt.

        
Bezug
Helly's Theorem - Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 06.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Helly's Theorem - Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:04 So 04.07.2010
Autor: dazivo

Hallo !

Ich weiss, ich bin zu spät, aber vielleicht hilfts dir trotzdem!
Ich habe das Buch nämlich auch!

Ok, die Richtung 1) => 2) ist offensichtlich trivial.

2) => 1) die lin. unabhäng. geschichte:

Falls die [mm] $f_i [/mm] 's$ nicht linear unabhängig wären, dann gilt per Definition, dass man mindestens ein [mm] $f_i$ [/mm] als lineare Kombination der Anderen schreiben kann. Die Ungleichung, die man da annimmt, ist ja eine Aussage über die Norm eines Elementes im [mm] $span_{\IK} \{ f_j; j\}$. [/mm]  Also reicht es die Aussage für eine linear unabhängige Teilmenge $U$ zu betrachten, die den gesamten "span" erzeugt, denn die "restlichen", nicht in dieser linear unabhängigen Teilmenge enthaltenen Elemente, kann man ja mittels einer Linearkombination der in $U$ enthalten Elemente bekommen. Das rechtfertigt die "o.B.d.A"- Aussage.

Ich hoffe, ich konnte Licht in die Sache bringen. Der Rest des Beweises steht eigentlich schon da (S. 110 oben bei mir)

Gruss dazivo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de