www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Herleiten der Volumenformel
Herleiten der Volumenformel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleiten der Volumenformel: Frage
Status: (Frage) beantwortet Status 
Datum: 08:37 Mi 02.02.2005
Autor: Moechte-gern-Mathe-genie

Hallo!
Ich habe eine grosses Problem. Ich muss die Formel fuer das Volumen einer Kugelkappe mit Hilfe eines Rotationsintegrals herleiten! Kann mir hierbei einer behilflich sein???
Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Herleiten der Volumenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Mi 02.02.2005
Autor: FriedrichLaher

Hallo Moechte-gern-Mathe-genie

um Deinem Pseudonym gerecht zu werden solltest
Du hier schon ein paar eigene Überlegungen dazu
beitragen.
Die zu integrierenden Volumselemente dV
sind
Zylindrische Scheibchen, [mm] $\text{dV = }r^2 \pi \tex{dx}$ [/mm]
wobei
x der Abstand der Schnittebene vom Mittelpunkt der Kugel
mit dem Radius R ist.
Nun drücke die Größen x, r(x), dx am besten
durch den Winkel im Kugelmittelpunkt aus der
von dem rechtwinkeligem 3eck aus R ( Hypothenuse ),
und x, r(x) gebildete wird.

Zu integrieren ist dann natürlich über einen Winkelbereich.

Bezug
                
Bezug
Herleiten der Volumenformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mi 02.02.2005
Autor: Moechte-gern-Mathe-genie

Danke fuer deine Hilfe! Doch mein Problem liegt daran, dass ich nicht weiss, was r(x) ist. ich nehme an, dass es die Hoehe h - r ist. Ist dies korrekt?

Bezug
                        
Bezug
Herleiten der Volumenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Mi 02.02.2005
Autor: FriedrichLaher

[Dateianhang nicht öffentlich]
Drücke r und x und als Folge davon [mm] $\text{dx = }x'(\alpha)*\text{d}\alpha$ [/mm] durch [mm] $\alpha$ [/mm] aus.
Über welchen Winkelbereich für eine gegebene Höhe der Kugelkappe zu integrieren ist
siehst Du doch?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Herleiten der Volumenformel: Alternative
Status: (Antwort) fertig Status 
Datum: 15:09 Mi 02.02.2005
Autor: dominik

Die Kugelkappe wird auch "Kugelsegment" genannt. Das Volumen wird oft durch die Höhe h der Kappe und den Kugelradius r ausgedrückt.

Vorschlag:
Du zeichnest einen Halbkreis mit Mittelpunkt im Nullpunkt des Koordinatensystems. Die Gleichung lautet dann [mm] x^2+y^2=r^2 [/mm] und ist nichts anderes als der Satz von Pythagoras.

Nun wird dieser Halbkreis um die x-Achse gedreht. Für das Rotationsintegral wählt man aber nicht das ganze Intervall - dabei entstünde ja eine Kugel -, sondern das Intervall auf der x-Achse von  r-h  bis r:

[mm] V=\pi* \integral_{a}^{b} {[f(x)]^2 dx}=\pi*\integral_{r-h}^{r} {(r^2-x^2 )dx}=\pi* [r^2*x- \bruch{x^3}{3}]_{r-h}^h= \bruch{\pi*h^2}{3}*(3r-h) [/mm]

Viele Grüsse
dominik


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de