Herleitung: Formel Abstand P-G < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Grüße euch herzlichst, liebe Matheraum-Gemeinde!
Ich habe mich für einen Vortrag bezüglich des Themas "Abstand Punkt - Gerade" gemeldet und soll meinen Mitschülern nun vermitteln, wieso die Formel eben genauso aussieht und nich' anders... Doch dummerweise is' mein Mathebuch ("LS Analytische Geometrie Leistungskurs" Klasse 13 vom Klett Verlag, S. 147) mir dabei keine große Hilfe...
Denn dort steht nur unter Methode 2:
"In Fig. 147.2 ist [mm] \overline{PF} [/mm] = [mm] \left| \vec r - \vec p \right| [/mm] * cos [mm] \varphi [/mm] = [mm] \left|
\left( \vec r - \vec p \right) * \vec u0 \right| [/mm] , wobei [mm] \vec [/mm] u0 ein Richtungsvektor von g vom Betrag 1 ist.
Nach dem Satz des Pythagoras gilt also
d = [mm] \wurzel{\left( \vec r - \vec p \right)^2 - \left( \left( \vec r - \vec p \right) * \vec u0 \right) }"
[/mm]
Bemerkung: Die kleinen Mal-Punkte sollen dabei das Skalarprodukt darstellen!
Leider bringt mir dieser Lehrbuchtext gar nichts für meinen Vortrag...
Ich weiß, dass ich hier keine eigenen Lösungsansätze miteinbringe, aber glaubt mir, ich sehe wirklich gar nicht durch - das ist totales Neuland für mich.
Meine einzigen Lösungsideen bisher sind, dass [mm] \vec [/mm] r - [mm] \vec [/mm] p wohl die Hypotenuse für das rechtwinklige Dreieck PFR (P als Punkt der Geraden, F als Lotfußpunkt sowie R als gegebener Punkt ausserhalb der Geraden) darstellt und d daher die Ankathete sein müsste, damit man mit dem Satz von Pythagoras was anstellen kann... Darauf bezieht sich die Formel ja schließlich, oder? Das habe ich jedenfalls als Tipp bekommen von meinem Kursleiter...
Ich hoffe, dass sich jemand meiner erbarmt und mir hilft? Habe im I-Net auch nichts gefunden, was einer Herleitung genau dieser Formel auch nur annähernd entspricht.
Liebste Grüße aus dem Norden,
Sebastian
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:21 Di 13.11.2007 | Autor: | leduart |
Hallo
Sieh doch mal in unserer Mathebank nach, vielleicht verstehst du es dann!
klick hier
sonst poste oder beschreibe das Bild in deinem Buch, (was ist F, was [mm] \alpha)
[/mm]
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:23 Do 15.11.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|