www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Herleitung: Formel Abstand P-G
Herleitung: Formel Abstand P-G < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung: Formel Abstand P-G: Herleitung
Status: (Frage) überfällig Status 
Datum: 23:01 Di 13.11.2007
Autor: StralsunderJung

Grüße euch herzlichst, liebe Matheraum-Gemeinde!

Ich habe mich für einen Vortrag bezüglich des Themas "Abstand Punkt - Gerade" gemeldet und soll meinen Mitschülern nun vermitteln, wieso die Formel eben genauso aussieht und nich' anders... Doch dummerweise is' mein Mathebuch ("LS Analytische Geometrie Leistungskurs" Klasse 13 vom Klett Verlag, S. 147) mir dabei keine große Hilfe...

Denn dort steht nur unter Methode 2:

"In Fig. 147.2 ist [mm] \overline{PF} [/mm] = [mm] \left| \vec r - \vec p \right| [/mm] * cos [mm] \varphi [/mm] =  [mm] \left| \left( \vec r - \vec p \right) * \vec u0 \right| [/mm]  , wobei  [mm] \vec [/mm] u0 ein Richtungsvektor von g vom Betrag 1 ist.
Nach dem Satz des Pythagoras gilt also

d = [mm] \wurzel{\left( \vec r - \vec p \right)^2 - \left( \left( \vec r - \vec p \right) * \vec u0 \right) }" [/mm]

Bemerkung: Die kleinen Mal-Punkte sollen dabei das Skalarprodukt darstellen!


Leider bringt mir dieser Lehrbuchtext gar nichts für meinen Vortrag...
Ich weiß, dass ich hier keine eigenen Lösungsansätze miteinbringe, aber glaubt mir, ich sehe wirklich gar nicht durch - das ist totales Neuland für mich.
Meine einzigen Lösungsideen bisher sind, dass  [mm] \vec [/mm] r - [mm] \vec [/mm] p wohl die Hypotenuse für das rechtwinklige Dreieck PFR (P als Punkt der Geraden, F als Lotfußpunkt sowie R als gegebener Punkt ausserhalb der Geraden) darstellt und d daher die Ankathete sein müsste, damit man mit dem Satz von Pythagoras was anstellen kann... Darauf bezieht sich die Formel ja schließlich, oder? Das habe ich jedenfalls als Tipp bekommen von meinem Kursleiter...

Ich hoffe, dass sich jemand meiner erbarmt und mir hilft? Habe im I-Net auch nichts gefunden, was einer Herleitung genau dieser Formel auch nur annähernd entspricht.


Liebste Grüße aus dem Norden,
Sebastian


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleitung: Formel Abstand P-G: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Di 13.11.2007
Autor: leduart

Hallo
Sieh doch mal in unserer Mathebank nach, vielleicht verstehst du es dann!
klick hier
sonst poste oder beschreibe das Bild in deinem Buch, (was ist F, was [mm] \alpha) [/mm]
Gruss leduart

Bezug
        
Bezug
Herleitung: Formel Abstand P-G: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:23 Do 15.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de