www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Herleitung Normalenform
Herleitung Normalenform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Normalenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Do 04.03.2010
Autor: surfergirl

Aufgabe
Leite die Normalenform einer Ebenengleichung her.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Eine Möglichkeit, Ebenen zu beschreiben ist die Normalenform einer Ebenengleichung.
Dazu braucht man den Normalenvektor.
Der Normalenvektor...
    - ist orthogonal zu den linear unabhängigen Spannvektoren [mm] \overrightarrow{u} [/mm] und [mm] \overrightarrow{v} [/mm]
    - ist also orthogonal zu allen Vektoren [mm] \overrightarrow{PQ} [/mm] mit Punkten P und Q in der Ebene E.
     (denn aus [mm] \overrightarrow{PQ}=r*\overrightarrow{u}+s*\overrightarrow{v} [/mm] folgt:
[mm] \overrightarrow{PQ}*\overrightarrow{n}=(r*\overrightarrow{u}+s*\overrightarrow{v})*\overrightarrow{n} [/mm]
       [mm] =r*\overrightarrow{u}*\overrightarrow{n}+s*\overrightarrow{v}*\overrightarrow{n} [/mm]
       =0+0
       =0

Frage: Mir ist nicht ganz klar wie man auf die Gleichung 0+0=0 kommt

Wenn [mm] \overrightarrow{n} [/mm] ein Normalenvektor der Ebene E mit [mm] \overrightarrow{x}=\overrightarrow{p}+r*\overrightarrow{u}+s*\overrightarrow{v} [/mm] ist, dann liegt der Punkt X genau dann in E, wenn für den Ortsvektor [mm] \overrightarrow{x}=\overrightarrow{OX} [/mm] gilt:
[mm] \overrightarrow{x}-\overrightarrow{p} [/mm] ist orthogonal zu [mm] \overrightarrow{n} [/mm]

Daher ist auch [mm] (\overrightarrow{x}-\overrightarrow{p})*\overrightarrow{n}=0 [/mm] eine Gleichung der Ebene E.

Frage: Mir leuchtet nicht ganz ein, warum diese Gleichung die Ebene beschreibt.
Ich würde mich sehr freuen, wenn mir jemand helfen könnte.
Schon mal vielen Dank im Voraus!


        
Bezug
Herleitung Normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Do 04.03.2010
Autor: abakus


> Leite die Normalenform einer Ebenengleichung her.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Eine Möglichkeit, Ebenen zu beschreiben ist die
> Normalenform einer Ebenengleichung.
>  Dazu braucht man den Normalenvektor.
>  Der Normalenvektor...
>      - ist orthogonal zu den linear unabhängigen
> Spannvektoren [mm]\overrightarrow{u}[/mm] und [mm]\overrightarrow{v}[/mm]
>      - ist also orthogonal zu allen Vektoren
> [mm]\overrightarrow{PQ}[/mm] mit Punkten P und Q in der Ebene E.
>       (denn aus
> [mm]\overrightarrow{PQ}=r*\overrightarrow{u}+s*\overrightarrow{v}[/mm]
> folgt:
>  
> [mm]\overrightarrow{PQ}*\overrightarrow{n}=(r*\overrightarrow{u}+s*\overrightarrow{v})*\overrightarrow{n}[/mm]
>        
> [mm]=r*\overrightarrow{u}*\overrightarrow{n}+s*\overrightarrow{v}*\overrightarrow{n}[/mm]
>         =0+0
>         =0
>  
> Frage: Mir ist nicht ganz klar wie man auf die Gleichung
> 0+0=0 kommt

Hallo,
der Normalenvektor einer Ebene steht senkrecht auf JEDEM Vektor in dieser Ebene.
Damit steht er auch senkrecht auf den beiden Vektoren, die diese Ebene aufspannen.
Soweit klar?

Das Skalarprodukt zweier aufeinander senkrecht stehender Vektoren ist Null.
Da [mm] \vec{n} [/mm] auf zwei Vektoren senkrecht steht, sind zwei Skalarprodukte Null...
Gruß Abakus

>  
> Wenn [mm]\overrightarrow{n}[/mm] ein Normalenvektor der Ebene E mit
> [mm]\overrightarrow{x}=\overrightarrow{p}+r*\overrightarrow{u}+s*\overrightarrow{v}[/mm]
> ist, dann liegt der Punkt X genau dann in E, wenn für den
> Ortsvektor [mm]\overrightarrow{x}=\overrightarrow{OX}[/mm] gilt:
>  [mm]\overrightarrow{x}-\overrightarrow{p}[/mm] ist orthogonal zu
> [mm]\overrightarrow{n}[/mm]
>  
> Daher ist auch
> [mm](\overrightarrow{x}-\overrightarrow{p})*\overrightarrow{n}=0[/mm]
> eine Gleichung der Ebene E.
>  
> Frage: Mir leuchtet nicht ganz ein, warum diese Gleichung
> die Ebene beschreibt.
>  Ich würde mich sehr freuen, wenn mir jemand helfen
> könnte.
>  Schon mal vielen Dank im Voraus!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de