Herleitung der analyt. Lösung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beschreiben Sie ausführlich die Herleitung der analytischen Lösung der Poisson-
Gleichung u = −1 auf dem Gebiet
= (0, 1) × (0, 1) mit den Dirichletschen
Randbedingungen u = 0 |
Hallo,
für ein Mathe-Referat soll ich die analytische Lösung für das oben genannte Problem herleiten und bin ziemlich am verzweifeln.
In der Vorlesung wurden leider sogut wie nur numerische Verfahren behandelt.
Ich weiß, dass es sich um eine lineare inhomogene partielle Dgl 2. Ordnung handelt. Die allgemeine Lösung besteht aus der homogenen und der partikulären Lösung. Die homogene Lösung von uxx+uyy=0 kann ja über die Separation der Variablen erfolgen, oder?
Mein Problem ist, dass ich nun nicht weiß, wie die Inhomogenität von -1 behandelt werden kann. Außerdem weiß ich nicht, ob die Randbedingungen dann erst in der allgemeinen Lösung berücksichtigt werden oder für beide Teilprobleme (homogen und partikulär) gesondert bearbeitet werden müssen.
Ich bin für jede Hilfe dankbar!
Lieben Gruß
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Mi 02.01.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|