www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Hermitesche Polynome
Hermitesche Polynome < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermitesche Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Do 24.03.2011
Autor: Zukku

Aufgabe
Sei [mm] f(x)=e^{-x^2}. [/mm] Zeige: f^(n)(x)ist von der Gestalt [mm] H_{n}(x)*e^{-x^2}, [/mm] wo [mm] H_{n} [/mm] ein Polynome ist.

Zeige: [mm] H_{n+1}+2xH_{n}+2nH_{n-1}=0 [/mm]
und [mm] H''_{n}-2xH'_{n}+2nH_{n}=0. [/mm]


Wie kann ich das zeigen?

Ansätze: Ich hab mich damit beschäftigt und [mm] H_{1} [/mm] bis [mm] H_{4} [/mm] aufgestellt und herausgefunden, dass ich [mm] H_{n} [/mm] schreiben kann als [mm] H'_{n-1}-2x*H_{n-1}. [/mm]

Dann habe ich versucht, die erste Formel mit Induktion zu beweisen, komme aber nicht auf das n in der Formel.

Bitte um Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hermitesche Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 24.03.2011
Autor: Leopold_Gast

Zeigen wir zunächst, daß die [mm]n[/mm]-te Ableitung von der Gestalt

[mm]f^{(n)}(x) = H_n(x) \cdot \operatorname{e}^{-x^2}[/mm] mit einem Polynom [mm]H_n(x)[/mm]

ist.

Für [mm]n=0[/mm], also die Funktion [mm]f[/mm] selbst, stimmt die Aussage mit [mm]H_0(x) = 1[/mm] konstant. (Induktionsverankerung)

Nehmen wir an, die Aussage stimmt für ein gewisses [mm]n[/mm], also

[mm]f^{(n)}(x) = H_n(x) \cdot \operatorname{e}^{-x^2}[/mm] (Induktionsannahme)

so folgern wir durch nochmaliges Differenzieren

[mm]f^{(n+1)}(x) = \left( f^{(n)} \right)'(x) = H_n'(x) \cdot \operatorname{e}^{-x^2} - 2x \cdot H_n(x) \cdot \operatorname{e}^{-x^2} = \left( H_n'(x) - 2x \cdot H_n(x) \right) \cdot \operatorname{e}^{-x^2}[/mm]

Setzen wir also

[mm]H_{n+1}(x) = H_n'(x) - 2x \cdot H_n(x)[/mm]

so erkennen wir die Richtigkeit der Aussage auch für [mm]n+1[/mm] (Induktionsbehauptung), denn die Ableitung eines Polynoms ist wieder ein Polynom, und das Weitere garantieren die Ringeigenschaften der Polynome.

Du kannst in die Behauptung noch aufnehmen, daß der Leitkoeffizient von [mm]H_n(x)[/mm] den Wert [mm](-2)^n[/mm] hat, und darüber die Induktion laufen lassen. Dann weißt du noch etwas mehr, nämlich daß [mm]H_n(x)[/mm] vom Grad [mm]n[/mm] ist.

Und für die restlichen Behauptungen könnte man auch an Induktion denken.

Bezug
        
Bezug
Hermitesche Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Do 24.03.2011
Autor: Tsetsefliege

In der Angabe befindet sich ein kleiner Fehler, es müsste

[mm] H_{n+1}-2xH_{n}+2nH_{n-1}=0 [/mm] heißen, nicht

[mm] H_{n+1}+2xH_{n}+2nH_{n-1}=0 [/mm]

Bezug
                
Bezug
Hermitesche Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:13 Fr 25.03.2011
Autor: Zukku

Das stimmt, danke für die Korrektur!

Außerdem habe ich mich unklar ausgedrückt, entschuldigung. Mein Problem ist es nicht zu zeigen, dass alle [mm] H_{n} [/mm] Polynome sind, das habe ich schon geschafft.

Ich schaffe es aber nicht, mit Induktion die beiden Formeln unten, also die Rekursionsformeln zu beweisen.

Danke für eure Hilfe!

lg Zukku

Bezug
                        
Bezug
Hermitesche Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Fr 25.03.2011
Autor: Leopold_Gast

Irgendwie finde ich, daß das Pluszeichen richtig ist, nicht das Minuszeichen.

Man berechnet mit [mm]H_{n+1}(x) = H_n'(x) - 2x H_n(x)[/mm] und [mm]H_0(x) = 1[/mm] die ersten Glieder

[mm]H_0(x) = 1 \, , \ \ H_1(x) = -2x \, , \ \ H_2(x) = 4x^2 - 2[/mm]

Und hier gilt:  [mm]H_2(x) + 2x H_1(x) + 2 H_0(x) = 0[/mm]

Indem man die Gleichung mit [mm]\operatorname{e}^{-x^2}[/mm] (was ja nie 0 werden kann) durchmultipliziert, erhält man die äquivalente Formel

[mm]f''(x) + 2x f'(x) + 2 f(x) = 0[/mm]

Und jetzt zeigt man mit Induktion

[mm]\text{(\*)} \ \ f^{(n+1)}(x) + 2x f^{(n)}(x) + 2n f^{(n-1)}(x) = 0[/mm] für [mm]n \geq 1[/mm]

Der Induktionsanfang [mm]n=1[/mm] wurde gerade gemacht. Und die Induktionsbehauptung erhält man aus der Induktionsannahme schlicht durch Differenzieren der Gleichung.

Wenn man [mm]\text{(\*)}[/mm] mit [mm] \operatorname{e}^{x^2} [/mm] multipliziert, folgt

[mm]H_{n+1}(x) +2x H_n(x) + 2n H_{n-1}(x) = 0[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de