www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Hesse-Matrix
Hesse-Matrix < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hesse-Matrix: Frage
Status: (Frage) für Interessierte Status 
Datum: 13:41 Sa 25.06.2005
Autor: bobby

Ich habe ein Problem bei dieser Aufgabe:

Beweisen Sie, dass für f [mm] \in C^{2}(U), U\subset\IR^{n} [/mm] offen, und v [mm] \in \IR^{n} [/mm] gilt:  [mm] \bruch{\partial^{2}}{ \partial v \partial v}f(x)=v^{T}H_{f}(x)v. [/mm]

        
Bezug
Hesse-Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 Sa 25.06.2005
Autor: Astrid

Hallo Bobby,

bitte beachte unsere Forenregeln. Wo genau liegt dein Problem? Kennst du die Definitionen? Wo kommst du nicht weiter?

Es wäre schön, wenn du uns ein paar Ansätze lieferst oder erklärst, wo du stecken bleibst.

Viele Grüße
Astrid

Bezug
                
Bezug
Hesse-Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 18:22 Sa 25.06.2005
Autor: bobby

Also ich habe die Formel für die Hesse-Matrix so wie sie in der Aufgabe steht kennengelernt, aber ich weis die Ansätze zur Herleitung nicht so richtig...
Brauche einen Tipp/Ansatz für den Beweis...

Bezug
                        
Bezug
Hesse-Matrix: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 25.06.2005
Autor: logarithmus

Hallo Bobby,

die Aufgabenstellung ist nicht ganz klar, da es zu einer Funktion immer Definitionsbereich und Wertebereich gehören. Aber ich nehme mal an, die Aufgabe lautet:

Beweisen Sie, dass für f : U [mm] \to \IR, [/mm] f $ [mm] \in C^{2}(U), U\subset\IR^{n} [/mm] $ offen, und v $ [mm] \in \IR^{n}, [/mm] ||v|| = 1 $ gilt:  $ [mm] \bruch{\partial^{2}}{ \partial v \partial v}f(x)=v^{T}H_{f}(x)v. [/mm] $


Erstmal ein Paar Def.:
[mm] \bruch{\partial}{ \partial v}f(x) [/mm] = Richtungsableitung von f im Punkt x in Richtung v mit ||v|| = 1.

f is stetig differenzierbar, dann gilt für die Richtungsableitung (Satz): [mm] \bruch{\partial}{ \partial v}f(x) [/mm] = <v, grad(f(x))> = [mm] v^T\cdot [/mm] grad(f(x)) = (*).

grad(f(x)) :=  [mm] \summe_{i=1}^{n} \bruch{\partial}{ \partial x_i}f(x)e_i [/mm] = ... , wobei [mm] e_i [/mm] die i-te Einheitsvektor ist.

Lösung:
Man setze die Def. von grad(f(x)) in (*) ein, dann liefert das Skalarprodukt eine differenzierbare Funktion von U [mm] \to \IR, [/mm] U offen. Wende die beschriebene Prozedur auf diese Funktion an, dann kriegst du einen Ausdruck mit einer doppelten Summe. Diese Doppelte Summe entspricht der Hesse-Matrix ...

Das wäre mein Ansatz für das gegebene Problem.
Solltest du nicht weiterkommen, dann schreib deine Lösung damit wir daran arbeiten können.

schöne grüsse,
logarithmus


Bezug
                                
Bezug
Hesse-Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 13:15 Di 28.06.2005
Autor: bobby

Also, ich habe das jetzt versucht so zu zeigen, vielleicht kann mir jemand sagen ob das richtig ist, oder halt verbessern.

[mm] \bruch{\partial}{\partial v}f(x)=v^{T}\summe_{i=1}^{n}\bruch{\partial}{\partial x_{i}}f(x)e_{i} [/mm]

Daraus folgt dann:

[mm] \bruch{\partial^{2}}{\partial v \partial v}f(x) [/mm] = [mm] v^{T} \summe_{i=1}^{n}\bruch{\partial}{\partial x_{i}}e_{i} \summe_{j=1}^{n}\bruch{\partial}{\partial x_{j}}e_{j} [/mm] v = [mm] v^{T} \summe_{i,j=1}{n}\bruch{\partial^{2}}{\partial x_{i} \partial x_{j}}f(x)e_{i,j} [/mm] v = [mm] v^{T} H_{f}(x) [/mm] v


Ich glaube irgendwas stimmt da noch nicht so richtig, weis aber nicht was...

Bezug
                                        
Bezug
Hesse-Matrix: Ergänzung
Status: (Antwort) fertig Status 
Datum: 11:26 Mi 29.06.2005
Autor: logarithmus

Hallo Bobby,

nach den Überlegungen in meiner vorigen Antwort sollte die Antwort richtig sein. Du hast die Formel eingesetzt und gerechnet.

[mm] \bruch{\partial}{\partial v}f(x)==v^{T}(\summe_{i=1}^{n}\bruch{\partial}{\partial x_{i}}f(x)e_{i}). [/mm]

[mm] \bruch{\partial^{2}}{\partial v \partial v}f(x) [/mm] = [mm] [/mm] = [mm] v^{T}(\summe_{j=1}^{n}\bruch{\partial}{\partial x_{j}}(v^T \summe_{i=1}^{n}\bruch{\partial}{\partial x_{i}}f(x)e_i)e_{j}) [/mm] = [mm] v^{T}(\summe_{j=1}^{n}(v^T \bruch{\partial}{\partial x_{j}} \summe_{i=1}^{n}\bruch{\partial}{\partial x_{i}}f(x)e_i)e_{j}) [/mm] = [mm] v^{T}(\summe_{j=1}^{n}(v^T \summe_{i=1}^{n}\bruch{\partial}{\partial x_{j}}\bruch{\partial}{\partial x_{i}}f(x)e_i)e_{j}) [/mm] = [mm] v^{T}(\summe_{j=1}^{n}v^T(\summe_{i=1}^{n}\bruch{\partial}{\partial x_{j}}\bruch{\partial}{\partial x_{i}}f(x)e_i)e_{j}) [/mm] = [mm] v^{T}( v^T \underbrace{\summe_{j=1}^{n}\summe_{i=1}^{n}\bruch{\partial}{\partial x_{j}}\bruch{\partial}{\partial x_{i}}f(x)e_ie_{j}}_{=Hess(f(x))}) [/mm] = [mm] v^T(v^T H_f) =v^T (H_f [/mm] v) = [mm] v^T H_f [/mm] v [mm] \Box [/mm]

gruss,
logarithmus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de