www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Hesse-Normalform
Hesse-Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hesse-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 So 21.12.2014
Autor: emperor

Aufgabe
Gegeben sei die Ebene im [mm] \IR^3: [/mm]

[mm] E=\vektor{1 \\ 2 \\ 3}+\lambda\vektor{-2 \\ 3 \\ 5}+\mu\vektor{0 \\ -1 \\ 3}|\lambda,\mu\in\IR [/mm]

a) Berechnen Sie die Hesse-Normalform von E

b) Berechnen Sie den Abstand von E zu dem Punkt P=(2,5,-3).

c) Geben Sie eine Ebene in Parameter- und Hesse-Normalforum an, die parallel zu E ist und den Punkt P enthält

Guten Abend,

ich habe die ersten beiden schon beantwortet aber ich weiß nicht wie ich die c) angehen soll.

a) Hesse-Normalform: [mm] \vec{n}\cdot(\vec{x}-\vec{a})=0 [/mm] wobei [mm] \vec{n}=\frac{1}{||\vec{v}\times\vec{w}||}\vec{v}\times\vec{w} [/mm]

[mm] \Rightarrow \vec{n}=\frac{1}{\sqrt{236}}\vektor{14 \\ 6 \\ 2} [/mm]

[mm] \Rightarrow E:=\frac{1}{\sqrt{236}}\vektor{14 \\ 6 \\ 2}\cdot [\vektor{x_1 \\ x_2 \\ x_3}-\vektor{1 \\ 2 \\ 3}]=0 [/mm]

b) Abstand von E zu P

[mm] \frac{1}{\sqrt{236}}\vektor{14 \\ 6 \\ 2}\cdot [\vektor{2 \\5 \\ -3}-\vektor{1 \\ 2 \\ 3}]=\frac{14}{\sqrt{236}}+\frac{18}{\sqrt{236}}-\frac{12}{\sqrt{236}}=\frac{20}{\sqrt{236}} [/mm]

c) ?

Danke schonmal.

Gruß

Emperor

        
Bezug
Hesse-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 21.12.2014
Autor: andyv

Hallo,

ersetze den Stützvektor von E durch [mm] $\vec [/mm] OP$. Dan hat die so entstandene Ebene denselben Normalenvektor, liegt also parallel zu E und beinhaltet ferner den Punkt P.

Liebe Grüße

Bezug
                
Bezug
Hesse-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 So 21.12.2014
Autor: emperor

Vielen Dank!

Meine anderen Berechnungen stimmen so?

Zu c)

In Hesse-Normalenform:

$ [mm] \Rightarrow E_\parallel:=\frac{1}{\sqrt{236}}\vektor{14 \\ 6 \\ 2}\cdot [\vektor{x_1 \\ x_2 \\ x_3}-\vektor{2 \\ 5 \\ -3}]=0 [/mm] $

In Parameterform:

[mm] E_\parallel=$ E=\vektor{2 \\ 5 \\ -3}+\lambda\vektor{-2 \\ 3 \\ 5}+\mu\vektor{0 \\ -1 \\ 3}|\lambda,\mu\in\IR [/mm] $

Stimmt das so oder habe ich das falsch verstanden?

Gruß

Emperor

Bezug
                        
Bezug
Hesse-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 So 21.12.2014
Autor: MathePower

Hallo emperor,

> Vielen Dank!
>  
> Meine anderen Berechnungen stimmen so?
>  


Ja.

Beim Normalenvektor kannst Du noch etwas kürzen.


> Zu c)
>  
> In Hesse-Normalenform:
>  
> [mm]\Rightarrow E_\parallel:=\frac{1}{\sqrt{236}}\vektor{14 \\ 6 \\ 2}\cdot [\vektor{x_1 \\ x_2 \\ x_3}-\vektor{2 \\ 5 \\ -3}]=0[/mm]
>  
> In Parameterform:
>  
> [mm]E_\parallel=[/mm] [mm]E=\vektor{2 \\ 5 \\ -3}+\lambda\vektor{-2 \\ 3 \\ 5}+\mu\vektor{0 \\ -1 \\ 3}|\lambda,\mu\in\IR[/mm]
>  
> Stimmt das so oder habe ich das falsch verstanden?
>


Das stimmt so. [ok]


> Gruß
>  
> Emperor



Gruss
MathePower

Bezug
                                
Bezug
Hesse-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 So 21.12.2014
Autor: emperor

Super. Vielen Dank für die nette Hilfe.

Gruß

Emperor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de