www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Hessematrix Extremalstellen
Hessematrix Extremalstellen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessematrix Extremalstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Mi 07.12.2011
Autor: dodo4ever

Hallo sehr geehrter Matheraum und danke das du niemals müde wirst... :)

Ich habe ein Problem mit folgender Funktion:

f: [mm] \IR^3 \to \IR, [/mm] (x,y,z) [mm] \to 5x^2+4xy+y^2+2z^2 [/mm]

Es geht nun darum die Extremalstellen zu finden.

Ich komme zunächst zum notwendigen Kriterium:

[mm] grad_{\vec{x}}f=0 [/mm]

das heißt, es müssen zunächst die 1. partiellen Ableitungen gebildet werden.

[mm] \bruch{\partial f}{\partial x}=10x [/mm] + 4y

[mm] \bruch{\partial f}{\partial y}=4x [/mm] + 2y

[mm] \bruch{\partial f}{\partial z}=4z [/mm]

und somit [mm] grad_{\vec{x}}f=\vektor{10x + 4y \\ 4x + 2y \\ 4z}=\vektor{0 \\ 0 \\ 0} [/mm]

ich löse nun beispielweise 10x+4y nach x oder y auf oder beispielsweise 4x+2y nach x oder y auf und setze anschließend das Ergebnis in die andere Gleichung... Aber egal was ich mache, ich komme immer auf die krit Stellen x=0 und y=0

als einzige und unverkennbare richtige Lösung erhalte ich z=0... Mach ich irgendetwas falsch oder muss ich das anders versuchen zu lösen???

Need your Help... Please...

mfg dodo4ever

        
Bezug
Hessematrix Extremalstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Mi 07.12.2011
Autor: MathePower

Hallo dodo4ever,

> Hallo sehr geehrter Matheraum und danke das du niemals
> müde wirst... :)
>  
> Ich habe ein Problem mit folgender Funktion:
>  
> f: [mm]\IR^3 \to \IR,[/mm] (x,y,z) [mm]\to 5x^2+4xy+y^2+2z^2[/mm]
>  
> Es geht nun darum die Extremalstellen zu finden.
>  
> Ich komme zunächst zum notwendigen Kriterium:
>  
> [mm]grad_{\vec{x}}f=0[/mm]
>  
> das heißt, es müssen zunächst die 1. partiellen
> Ableitungen gebildet werden.
>  
> [mm]\bruch{\partial f}{\partial x}=10x[/mm] + 4y
>  
> [mm]\bruch{\partial f}{\partial y}=4x[/mm] + 2y
>  
> [mm]\bruch{\partial f}{\partial z}=4z[/mm]
>  
> und somit [mm]grad_{\vec{x}}f=\vektor{10x + 4y \\ 4x + 2y \\ 4z}=\vektor{0 \\ 0 \\ 0}[/mm]
>  
> ich löse nun beispielweise 10x+4y nach x oder y auf oder
> beispielsweise 4x+2y nach x oder y auf und setze
> anschließend das Ergebnis in die andere Gleichung... Aber
> egal was ich mache, ich komme immer auf die krit Stellen
> x=0 und y=0
>  
> als einzige und unverkennbare richtige Lösung erhalte ich
> z=0... Mach ich irgendetwas falsch oder muss ich das anders
> versuchen zu lösen???
>  


Die errechnete kritische Stelle ist schon richtig.


> Need your Help... Please...
>  
> mfg dodo4ever


Gruss
MathePower

Bezug
                
Bezug
Hessematrix Extremalstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 07.12.2011
Autor: dodo4ever

Hallo Mathepower... Ich danke dir für die Hilfe...

Ich habe nun auch keine weiteren krit Stellen gefunden, weshalb ich mich nun auf dem Weg zur Hessematrix machen wollte...

[mm] \bruch{\partial f}{\partial x}=10x [/mm] + 4y [mm] \Rightarrow \bruch{\partial^2 f}{\partial x^2}=10 [/mm]

[mm] \bruch{\partial f}{\partial y}=4x [/mm] + 2y [mm] \Rightarrow \bruch{\partial^2 f}{\partial y^2}=2 [/mm]

[mm] \bruch{\partial^2 f}{\partial z^2}=4z \Rightarrow \bruch{\partial^2 f}{\partial z^2}=4 [/mm]

Und wegen dem Satz von Schwarz gilt:


[mm] \bruch{\partial f}{\partial x \partial y}=\bruch{\partial f}{\partial y \partial x}=4 [/mm]

[mm] \bruch{\partial f}{\partial x \partial z}=\bruch{\partial f}{\partial z \partial x}=0 [/mm]

[mm] \bruch{\partial f}{\partial y \partial z}=\bruch{\partial f}{\partial z \partial y}=0 [/mm]

Und es ergibt sich die Hessematrix:

[mm] hess_{(x,y,z)}=\pmat{ 10 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 4 } [/mm]

Und dessen Determinante ist [mm] det\pmat{ 10 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 4 }=16 [/mm]

da die Determinante=16 > 0 und [mm] \bruch{\partial^2 f}{\partial x^2}=10>0, [/mm] handelt es sich im Punkt (0,0,0) um ein lokales Minimum. Dieses Minimum ist auch global...

habt ihr nocht weitere kirt Punkte? ist das Minimum wirklich global? Es gibt ja keinen kleineren Punkt oder???

mfg dodo4ever

Bezug
                        
Bezug
Hessematrix Extremalstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 07.12.2011
Autor: MathePower

Hallo dodo4ever,

> Hallo Mathepower... Ich danke dir für die Hilfe...
>  
> Ich habe nun auch keine weiteren krit Stellen gefunden,
> weshalb ich mich nun auf dem Weg zur Hessematrix machen
> wollte...
>  
> [mm]\bruch{\partial f}{\partial x}=10x[/mm] + 4y [mm]\Rightarrow \bruch{\partial^2 f}{\partial x^2}=10[/mm]
>  
> [mm]\bruch{\partial f}{\partial y}=4x[/mm] + 2y [mm]\Rightarrow \bruch{\partial^2 f}{\partial y^2}=2[/mm]
>  
> [mm]\bruch{\partial^2 f}{\partial z^2}=4z \Rightarrow \bruch{\partial^2 f}{\partial z^2}=4[/mm]
>  
> Und wegen dem Satz von Schwarz gilt:
>  
>
> [mm]\bruch{\partial f}{\partial x \partial y}=\bruch{\partial f}{\partial y \partial x}=4[/mm]
>  
> [mm]\bruch{\partial f}{\partial x \partial z}=\bruch{\partial f}{\partial z \partial x}=0[/mm]
>  
> [mm]\bruch{\partial f}{\partial y \partial z}=\bruch{\partial f}{\partial z \partial y}=0[/mm]
>  
> Und es ergibt sich die Hessematrix:
>  
> [mm]hess_{(x,y,z)}=\pmat{ 10 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 4 }[/mm]
>  
> Und dessen Determinante ist [mm]det\pmat{ 10 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 4 }=16[/mm]
>  
> da die Determinante=16 > 0 und [mm]\bruch{\partial^2 f}{\partial x^2}=10>0,[/mm]
> handelt es sich im Punkt (0,0,0) um ein lokales Minimum.
> Dieses Minimum ist auch global...
>  
> habt ihr nocht weitere kirt Punkte? ist das Minimum
> wirklich global? Es gibt ja keinen kleineren Punkt oder???
>


Ja, das ist richtig. [ok]


> mfg dodo4ever


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de