Hessenormalform < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:22 Mi 18.03.2009 | Autor: | evils |
Wenn ich mittels der Hessenormalform einen Abstand ausrechne, und dieser ein - davor hat, sagt mir das, dass Punkt und Ebene oder Gerade und Ebene oder Ebene und Ebene auf der gleichen Seite liegen?
Hab ich das richtig verstanden? und wenn bei dem Abstand + herauskommt, heißt das sie liegen auf verschiedenen Seiten vom Ursprung?
oder verwechsel ich da nun was?
danke schonmal für eine Antwort!
lg Susi
|
|
|
|
Hi, evils,
> Wenn ich mittels der Hessenormalform einen Abstand
> ausrechne, und dieser ein - davor hat, sagt mir das, dass
> Punkt und Ebene oder Gerade und Ebene oder Ebene und Ebene
> auf der gleichen Seite liegen?
>
> Hab ich das richtig verstanden? und wenn bei dem Abstand +
> herauskommt, heißt das sie liegen auf verschiedenen Seiten
> vom Ursprung?
>
> oder verwechsel ich da nun was?
Ich erklär' Dir's mal lieber so:
Du hast eine Ebene.
Die halbiert den Anschauungsraum (das tut JEDE Ebene).
In der einen Hälfte liegt der Nullpunkt.
Wenn Du nun einen zweiten Punkt P hast und Du kriegst bei der Berechnung des Abstandes dieses Punktes von der Ebene mit Hilfe der HNF sagen wir mal -5 raus, dann heißt das:
Dieser Punkt liegt bezüglich der Ebene im selben Halbraum ("auf derselben Seite") wie der Nullpunkt; bei +5 wären O und P auf verschiedenen Seiten bezüglich E.
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:22 Mi 18.03.2009 | Autor: | evils |
also so... oder? [Dateianhang nicht öffentlich]
hät gleich noch eine frage..
und zwar,..
es sind zwei Ebenen in Parameterform gegeben
man soll die Schnittgerade errechnen
kann man nun auch auf eine andere Art und Weise als mit dem Gleichungssystem den Schnittpunkt herausbekommen?
Weil den Richtungsvektor kann man ja mit Hilfe der beiden Normalenvektoren (Kreuzprodukt) herausfinden... Wär total praktisch, da mich Gleichungssysteme immer total verwirren!
danke schonmal
lg Susi
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:45 Mi 18.03.2009 | Autor: | glie |
> also so... oder? [Dateianhang nicht öffentlich]
>
Hallo Susi,
> hät gleich noch eine frage..
> und zwar,..
>
> es sind zwei Ebenen in Parameterform gegeben
> man soll die Schnittgerade errechnen
>
> kann man nun auch auf eine andere Art und Weise als mit dem
> Gleichungssystem den Schnittpunkt herausbekommen?
> Weil den Richtungsvektor kann man ja mit Hilfe der beiden
> Normalenvektoren (Kreuzprodukt) herausfinden... Wär total
> praktisch, da mich Gleichungssysteme immer total verwirren!
Also am einfachsten geht es eigentlich, wenn du eine Ebene in der Parameterform lässt und die andere Ebene in die Koordinatenform umrechnest.
Dann kannst du die eine Ebene in die andere einsetzen.
Beispiel:
[mm] \mm{E:\overrightarrow{X}=\vektor{1 \\ 2 \\ 3}+r*\vektor{1 \\ 2 \\ 2}+s*\vektor{2 \\ 0 \\ 3}}
[/mm]
[mm] \mm{H:2x_1-x_2+2x_3-4=0}
[/mm]
E in H einsetzen:
[mm] \mm{2*(1+r+2s)-(2+2r)+2(3+2r+3s)-4=0}
[/mm]
Wenn du das auflöst erhältst du:
[mm] \mm{r=-2,5s-0,5}
[/mm]
Setze das in die Parameterform der Ebene E, fasse zusammen und du hast eine Gleichung der Schnittgerade.
Gruß Glie
>
> danke schonmal
> lg Susi
>
|
|
|
|