www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Hessesche Normalform
Hessesche Normalform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Di 11.11.2008
Autor: Shabi_nami

Aufgabe
(1) x+2y+2z=9

(2) A(3|2|1) ; B(-1|-1|4) ; C(-5|0|-5)

(3) P (-6|10|16) steht senkrecht auf [mm] g:\vec{x}=\vektor{6 \\ 4 \\ 0}+r*\vektor{-8 \\ 4 \\ 8} [/mm]

Dazu sollen wir jeweils die Hessesche Normalform bilden. Ich war in der Stunde nicht da und ich habe überhaupt keine Ahnung, wie das gehen soll. Kann jemand mir bei dem ersten Beispiel schrittweise helfen??
Danke

        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 11.11.2008
Autor: MathePower

Hallo Shabi-nami,

> (1) x+2y+2z=9
>  
> (2) A(3|2|1) ; B(-1|-1|4) ; C(-5|0|-5)
>  
> (3) P (-6|10|16) steht senkrecht auf [mm]g:\vec{x}=\vektor{6 \\ 4 \\ 0}+r*\vektor{-8 \\ 4 \\ 8}[/mm]
>  
> Dazu sollen wir jeweils die Hessesche Normalform bilden.
> Ich war in der Stunde nicht da und ich habe überhaupt keine
> Ahnung, wie das gehen soll. Kann jemand mir bei dem ersten
> Beispiel schrittweise helfen??


Bei der Hesseschen Normalform einer Ebenengleichung wird der normierter Normalenvektor, also ein Vektor vom Betrage 1 verwendet.

Hier ist der Normalenvektor [mm]\pmat{1 \\ 2 \\ 2}[/mm]

Der Betrag hiervon: [mm] \wurzel{1^{2}+2^{2}+2^{2}}=3 [/mm]

Somit lautet die Hessesche Normalform:

[mm]\bruch{x+2*y+2*z}{3}=3[/mm]


>  Danke


Gruß
MathePower

Bezug
                
Bezug
Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 11.11.2008
Autor: Shabi_nami

Wie kommt man auf den letzten Teil?

Somit lautet die Hessesche Normalform:

[mm]\bruch{x+2*y+2*z}{3}=3[/mm]

Den Anfang kann ich nachvollziehen


Bezug
                        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 11.11.2008
Autor: moody

Durch einsetzen in:

[mm]c = \vec{x_{0}} \bruch{\vec{n}}{|\vec{n}|}[/mm]

Bezug
                                
Bezug
Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Di 11.11.2008
Autor: Shabi_nami

Das verstehe ich immer noch nicht so ganz...

Bezug
                                        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Di 11.11.2008
Autor: moody

Sorry meine erste Antwort war nicht sonderlich hilfreich.

Ich versuchs mal etwas detaillierter zu erklären:

Wie MathePower bereits gesagt hat:

"Bei der Hesseschen Normalform einer Ebenengleichung wird der normierter Normalenvektor, also ein Vektor vom Betrage 1 verwendet. "

Der Normalenvektor ist [mm] \vektor{1 \\ 2 \\ 2} [/mm]

Der Betrag war 3.

So um das nun in die HNF zu schreiben überlegst du dir wie du den Vektor  [mm] \vektor{1 \\ 2 \\ 2} [/mm] auf die Länge 1 bekommst.

Nämlich so: [mm] \vektor{1 \\ 2 \\ 2} [/mm] * [mm] \bruch{1}{3} [/mm]

In der Koordinatenform wäre dies:

x + 2y + 2z = 3

In der HNF in Koordinatenschreibweise dann:

[mm] \bruch{x + 2y + 2z}{3} [/mm] = 0

Durch 3 wegen dem Vektor mit der Länge 1.

Bezug
                                                
Bezug
Hessesche Normalform: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:55 Di 11.11.2008
Autor: Shabi_nami

Aber MathePower sagte doch, dass die Hessesche Normalenform

[mm]\bruch{x + 2y + 2z}{3}[/mm] = 3 sei

und du sagst =0

Und wie kommt man dazu, die 1/3 mit in die Ebene einzumultiplizieren?

Bezug
                                                        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 11.11.2008
Autor: moody

Wie MathePower auf die 3 kommt weiß ich auch nicht, aber ich will nicht ausschließen, dass ich mich mit den 0 irre.

* 1/3 weil der Vektor ja die Länge 1 haben soll und nicht 3.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de