www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Hessesche Normalform
Hessesche Normalform < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessesche Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:03 Mi 08.12.2010
Autor: Schalk

Aufgabe
Die Gerade G sei in Hessescher Normalform gegeben; d. h. [mm]G=H_c_,_\alpha[/mm] mit [mm]\left | c \right | = 1[/mm] und [mm]\alpha\geq 0[/mm]. Zeigen Sie
a) [mm]\alpha = d(0,G)[/mm].
b) Für [mm]x \in H_c_,_\alpha[/mm] ist [mm]c_{1}x_{1} + c_{2}x_{2} - \alpha = 0[/mm] und für ein beliebiges [mm]v \in \IR^2[/mm] ist [mm]c_{1}v_{1} + c_{2}v_{2} - \alpha = \pm d(v,G), \left | - \alpha \right | = d(v,G)[/mm].



Auch hier schwimme ich mal wieder im leeren Raum... Habt Ihr vielleicht einen ersten Tipp? Vielen Dank schon mal!

        
Bezug
Hessesche Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Mi 08.12.2010
Autor: Zwerglein

Hi, schalk,

was ist denn eigentlich Deine Frage?

mfG!
Zwerglein

Bezug
                
Bezug
Hessesche Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Mi 08.12.2010
Autor: Schalk

Hi Zwerglein!

Ich habe keine Ahnung, wie ich bei dieser Aufgabe überhaupt beginnen soll... Mir fehlt jeglicher Ansatz. Hast Du vielleicht einen Tipp?

Danke und schöne Grüße


Bezug
        
Bezug
Hessesche Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 02:38 Do 09.12.2010
Autor: Schalk



Ist dies eine mögliche Lösung für a)?
Behauptung: [mm]\alpha = d(0,G)[/mm]
Wenn [mm]\alpha[/mm]=0, so ist der Ursprung ein Punkt auf der Geraden, dessen Abstand zu Geraden natürlich Null ist. In diesem Fall ist die obige Behauptung richtig. Sei also c [mm]\neq[/mm] 0. Der Fußpunkt L des Lots, das vom Ursprung auf G gefällt wird, hat als Richtungsvektor den Normalenvektor c, d.h. es muss mit einem [mm]\beta\in\IR[/mm] gelten, dass
[mm]L = (l_1,l_2) = \alpha*(a,b)[/mm]
Da L [mm]\in[/mm] G gilt [mm]l_1*a + l_2*b = \alpha[/mm] also [mm]\beta*(a^2 + b^2) = \alpha[/mm]. Wegen [mm]\left | c \right |[/mm] = 1 gilt [mm]a^2 + b^2[/mm] = 1 und demnach [mm]\beta = \alpha[/mm]= c. Der gesuchte Abstand ist [mm]\left | \vec{L} \right |[/mm], wenn [mm]\vec{L}[/mm] der zu L gehörenden Ortsvektor ist. Nun ist aber  [mm]\left | \vec{L} \right |= \left | \beta \right | * \left | \alpha \right | = \left | \beta \right | = \left | \alpha \right |[/mm]


Bezug
                
Bezug
Hessesche Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Sa 11.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Hessesche Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Fr 10.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de