www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Hessische Normalform
Hessische Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessische Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 03.11.2010
Autor: Joan2

Hallo,

ich soll den Normalenvektor bestimmen von:
[mm] \overrightarrow{a} [/mm] = [mm] \vektor{0\\ 0}, \overrightarrow{b} [/mm] = [mm] \vektor{-1\\ 2}, \overrightarrow{c} [/mm] = [mm] \vektor{1\\ 3} [/mm]

Als Gleichungssysteme habe ich heraus:
[mm] -n_1 [/mm] + [mm] 2n_2 [/mm] = 0
[mm] n_1 [/mm] + [mm] 3n_2 [/mm] = 0

D.h. aber, dass der Normalenvektor

[mm] \overrightarrow{n} [/mm] = [mm] \bruch{1}{\wurzel{0}} \vektor{0\\ 0} [/mm]

ist. Das ist doch nicht lösbar. Habe ich was falsch gerechnet?


Viele Grüße,
Joan

        
Bezug
Hessische Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mi 03.11.2010
Autor: Schadowmaster

Ich glaube eher du hast was falsch verstanden...
Der Vektor [mm] $\vektor{0\\0}$ [/mm] hat natürlich keinen Normaleneinheitsvektor, sprich egal mit welcher Zahl du ihn erweiterst, seine Länge wird nie 1.
Ich nehme einfach mal ganz dreist an, dass der Aufgabensteller das auch wusste und die Aufgabe von daher etwas anders gemeint ist.
Diese drei Vektoren spannen nämlich eine Ebene auf.
Und zu einer Ebene kann man sehr schön einen Normaleneinheitsvektor finden.
Also frag am besten nochmal nach wie das gemeint war und/oder nimm die Ebene und rechne dazu den Normaleneinheitsvektor aus (Tipp: der steht senkrecht auf beide Richtungsvektoren der Ebene ;) ).


edit: bzw. ich frage mich gerade echt wie du auf deine Gleichungen gekommen bist...

Bezug
        
Bezug
Hessische Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:49 Do 04.11.2010
Autor: fred97

Du schreibst: " Hessische Normalform"

Wie kommst Du darauf. Die Normalform kommt nicht aus Hessen !  Sie kommt aus Sachsen.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de