www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Hexaeder Wahrscheinlichkeit
Hexaeder Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hexaeder Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Fr 24.07.2015
Autor: ValueAtRisk

Aufgabe
Gegeben sind ein paar Hexaeder (A und B). Mit welcher Wahrscheinlichkeit erreicht man $(A-B)=|2|$ $A & B = Augenzahl$? Die Lösung $P((A-B)=|2|)=0,222$.

Ich würde erstmal schauen welche Zahlen ich benötige wenn ich A werfe was bei B rauskommen muss und umgekehrt.

$(A-B)=2$
A; B
1;
2;
3; 1
4; 2
5; 3
6; 4

$(B-A)=-2$ "Von mir umgestellt um nicht über Eck denken zu müssen"
B; A;
1; 3
2; 4
3; 5
4; 6
5;
6;

Ergibt
[mm] $\frac{4}{6}*\frac{4}{6} [/mm] + [mm] \frac{4}{6}*\frac{4}{6}$ [/mm] Ist aber falsch.

Könnt ihr mir bitte einen Tipp oder Lösung geben? Wo liegt mein Fehler?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hexaeder Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Fr 24.07.2015
Autor: M.Rex

Hallo und [willkommenmr]

> Gegeben sind ein paar Hexaeder (A und B).

Meinst du einen ganz normalen W6-Würfel?

> Mit welcher
> Wahrscheinlichkeit erreicht man [mm](A-B)=|2|[/mm] [mm]A & B = Augenzahl[/mm]?
> Die Lösung [mm]P((A-B)=|2|)=0,222[/mm].
> Ich würde erstmal schauen welche Zahlen ich benötige
> wenn ich A werfe was bei B rauskommen muss und umgekehrt.

>

> [mm](A-B)=2[/mm]
> A; B
> 1;
> 2;
> 3; 1
> 4; 2
> 5; 3
> 6; 4

>

> [mm](B-A)=-2[/mm] "Von mir umgestellt um nicht über Eck denken zu
> müssen"
> B; A;
> 1; 3
> 2; 4
> 3; 5
> 4; 6
> 5;
> 6;

>

> Ergibt
> [mm]\frac{4}{6}*\frac{4}{6} + \frac{4}{6}*\frac{4}{6}[/mm] Ist aber
> falsch.

Wenn du schon den Weg einschlägst, die Möglichkeiten zu zählen, musst du auch konsequent dabei bleiben. Die beiden Würfel haben insgesamt 36 verschiedene Ereignisse. Davon sind folgende Ereignisse günstig, da sie zu der Differenz von 2 führen
1-3 ; 2-4 ; 3-4 ; 4-6 ; 6-4 ; 5-3 ; 4-2 ; 3-1

Das sind also 8 von 36 Ereignissen, und das führt zu der Wahrscheinlickeit [mm] \frac{8}{36}=\frac{2}{9}=0,\overline{2} [/mm]

Marius

Bezug
        
Bezug
Hexaeder Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Sa 25.07.2015
Autor: HJKweseleit


> Gegeben sind ein paar Hexaeder (A und B). Mit welcher
> Wahrscheinlichkeit erreicht man [mm](A-B)=|2|[/mm] [mm]A & B = Augenzahl[/mm]?
> Die Lösung [mm]P((A-B)=|2|)=0,222[/mm].
>  Ich würde erstmal schauen welche Zahlen ich benötige
> wenn ich A werfe was bei B rauskommen muss und umgekehrt.
>  
> [mm](A-B)=2[/mm]
>  A; B
>  1;
> 2;
> 3; 1
>  4; 2
>  5; 3
>  6; 4
>  
> [mm](B-A)=-2[/mm] "Von mir umgestellt um nicht über Eck denken zu
> müssen"
>  B; A;
>  1; 3
>  2; 4
>  3; 5
>  4; 6
>  5;
> 6;
>
> Ergibt
> [mm]\frac{4}{6}*\frac{4}{6} + \frac{4}{6}*\frac{4}{6}[/mm] Ist aber
> falsch.

Deine Rechnung ist nur im Ansatz richtig.
Um ein "günstiges" Ereignis deiner ersten Serie zu bekommen, musst du eine von 4 günstigen aus 6 Möglichen Ereignissen treffen, und die W. dafür ist [mm] \bruch{4}{6}. [/mm]
Damit das Glück komplettiert wird, reicht es aber nicht, jetzt wieder eine von 4 günstigen aus 6 zu treffen: Du hast ja schon die erste Zahl gewürfelt und musst nun genau die zum Abstand 2 hierzu passende treffen, und da gibt es nur noch 1 günstige Möglichkeit von 6, die W. ist [mm] \bruch{1}{6}. [/mm] So geht z.B. zur bereits gewürfelten 5 nur die 3, nicht aber auch die 1, 2 oder 4.

Somit insgesamt [mm] \bruch{4}{6}*\bruch{1}{6}. [/mm]

Dasselbe nun für das 2. Päckchen, und somit [mm] \bruch{4}{6}*\bruch{1}{6} [/mm] + [mm] \bruch{4}{6}*\bruch{1}{6} [/mm] = [mm] \bruch{8}{36}=\bruch{2}{9}. [/mm]




>  
> Könnt ihr mir bitte einen Tipp oder Lösung geben? Wo
> liegt mein Fehler?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de