www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Hilfe bei Integralrechnung
Hilfe bei Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Di 08.01.2008
Autor: Lucy89

Aufgabe
1.)
Das bestimmte Integral [mm] \integral_{0}^{1}(1+2x)³ [/mm] dx lässt sich auf zwei Arten lösen. Geben Sie diese an und führen Sie die nötigen rechnungen durch.

2.)
Gegeben ist die Funktion f: x -> [mm] \bruch{1}{2} [/mm] x³ - [mm] \bruch{9}{2} [/mm] x² + [mm] \bruch{23}{2} [/mm] x - [mm] \bruch{15}{2} [/mm]

a) Führen Sie eine Kurvendiskussion durch.

b) Berechnen Sie die endlichen Flächenstücke zwischen Kurve und Achse.

Hallo,
ich verzweifel gerade an meinen Mathehausaufgaben und ich hoffe, dass mir hier vielleicht jemand helfen kann. Im Moment weiß ich ehrlich gesagt nichtmal wie ich anfangen soll, vielleicht kann mir das ja jemand so erklären, dass sogar ich das verstehe. ;-) Liebe Grüße, Lucy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hilfe bei Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Di 08.01.2008
Autor: Event_Horizon

Hallo!

Das ist aber recht mager, eigentlich solltest du schon in der Lage sein, ein paar Ansätze zu liefern.



Zur 1)

Der ganz einfache Weg ist, die Klammer aufzulösen. Danach steht da [mm] $\int\,...\,x^3+\,...\,x^2+\,...\,x+\,...\,dx$ [/mm] , und das solltest du integrieren können.

Der nächste Weg wäre eine Substitution $z=1+2x$

Ein dritter Weg ist der folgende. Wenn du eine verkettete Funktion $F(g(x))$ hast, ist deren Ableitung $g'(x)*f(g(x))$ .

Oder rückwärts, und für dich von Bedeutung: [mm] $\int [/mm] g'(x)*f(g(x))dx=F(g(x))$. Bei dir ist jetzt $g(x)=1+2x$ und [mm] $f(...)=(...)^3$ [/mm] . Es fehlt dann noch ein Faktor, mit dem du deine Stammfunktion multiplizieren mußt.

zur 2)

Da du schon Integralrechnung hast, müßtest du Kurvendiskussionen doch schon können. Insbesondere die Nullstellen sind hier wichtig, denn du sollst im zweiten Teil das Integral der Funktion bilden, und als Grenzen jeweils benachbarte Nullstellen einsetzen. Du müßtest zwei oder drei verschiedene Nullstellen herausbekommen, und damit ein oder zwei Integrale berechnen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de