www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Hilfestellung
Hilfestellung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfestellung: globale Extremalstelle
Status: (Frage) beantwortet Status 
Datum: 12:21 Mo 06.09.2010
Autor: BlackGarfield1

Aufgabe
Zeigen Sie, dass weder f1 noch f2 eine globale Extremstelle besitzt.

f1(x) = [mm] \bruch{4x + 1}{2x - 1} [/mm]

f2 (x) = [mm] \bruch{x^4 -3x^3 +2x^2}{x - 1} [/mm]    

Wie oder mit welchen Methoden geht man an so eine Aufgabe ran?

Ich kenne es nur diese Art der Berechung, allerdings ist diese nur für die
Lokale Extrema bestimmen f´= 0 und f´´ ungleich 0


Danke schon mal
Alex

        
Bezug
Hilfestellung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mo 06.09.2010
Autor: angela.h.b.

Hallo,

ich werfe hier nur mal zwei Stichworte in den Raum, von denen ich hoffe, daß sie Dich auf Ideen bringen:

"Polstellen" und "Verhalten im Unendlichen".

Tip zu [mm] f_2: [/mm] Polynomdivision. [mm] f_2 [/mm] ist ein Polynom dritten Grades, welches an einer Stelle ein "Loch" hat.

Gruß v. Angela


Bezug
                
Bezug
Hilfestellung: Korektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:21 Mo 06.09.2010
Autor: BlackGarfield1

Danke für die Antwort.

Ok also mit der Polynomdivison wären

f1 (x) = 2+ [mm] \bruch{3}{2x - 1} [/mm]  und hätte für x = 0,5 eine Def. Lücke

f2 (x) = [mm] x^3-2x^2 [/mm]

mit der Grenzwertbetrachtung ins Unentliche sähe es dann so aus:

ich kann mir bei f1 (x) ansehen ob es von 0,5 hoch oder runter geht

[mm] \limes_f1 [/mm] (x) mit x minus 0,5

[mm] \limes_f1 [/mm] (x) mit x plus 0,5

und für f2 (x)

[mm] \limes_f2 [/mm] (x) mit x minus unentlich

[mm] \limes_f2 [/mm] (x) mit x plus unentlich


ist das so richtig und reicht das als beweiß das es keine globalen Extrema gib?

LG Alex.


Bezug
                        
Bezug
Hilfestellung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Mo 06.09.2010
Autor: Disap

Huhu!

> Danke für die Antwort.
>
> Ok also mit der Polynomdivison wären
>
> f1 (x) = 2+ [mm]\bruch{3}{2x - 1}[/mm]  und

angela hat dir vorgeschlagen, für f2 eine Polynomdivision zu machen, dies ist aber f1... Ich habe die Polynomdivision nun nicht nachgerechnet.

> f1 hätte für x = 0,5 eine  Def. Lücke

Wenn du mit "Def. Lücke" eine Polstelle meinst, dann ist das korrekt.

> f2 (x) = [mm]x^3-2x^2[/mm]

Also mit [mm] +x^3 [/mm] geht es schon mal los, das ist korrekt, und lediglich dieser Term ist für deine Grenzwertuntersuchung für das Verhalten im Unendlichen von Bedeutung.

>  
> mit der Grenzwertbetrachtung ins Unentliche sähe es dann
> so aus:
>  
> ich kann mir bei f1 (x) ansehen ob es von 0,5 hoch oder
> runter geht
>  
> [mm]\limes_f1[/mm] (x) mit x minus 0,5
>
> [mm]\limes_f1[/mm] (x) mit x plus 0,5

Was steht da? Etwa

[mm] $\lim_{x\to 0.5-} [/mm] f1(x) = [mm] -\infty$ [/mm]

[mm] $\lim_{x\to 0.5+} [/mm] f1(x) = [mm] +\infty$ [/mm] ?

Wenn du das so meintest, dann ist es richtig.

>
> und für f2 (x)
>  
> [mm]\limes_f2[/mm] (x) mit x minus unentlich
>  
> [mm]\limes_f2[/mm] (x) mit x plus unentlich

???

> ist das so richtig

Also mit der Schreibweise hier im Forum ist es falsch. Im Heft steht das bei dir bestimmt anders.

> und reicht das als beweiß
> das es keine
> globalen Extrema gib?

Ja, das reicht aus, wenn du deine Notation noch entsprechend anpasst.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de