www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Hoch- und Tiefpunkte
Hoch- und Tiefpunkte < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hoch- und Tiefpunkte: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:00 So 06.04.2008
Autor: DerDon

Hallo zusammen!

Ich hätte eine, wahrscheinlich recht einfache, Frage: Woran erkennt man, ob es sich bei den Extremwerten um einen Hochpunkt oder einen Tiefpunkt handelt.

Ich weiß zwar, wie man sie erhält, aber nicht, um welchen der beiden Fälle es sich handelt.

Ich hoffe ihr könnt mir weiterhelfen!

        
Bezug
Hoch- und Tiefpunkte: hinreichendes Kriterium
Status: (Antwort) fertig Status 
Datum: 18:05 So 06.04.2008
Autor: Loddar

Hallo DerDon!


Man setzt die x-Werte der möglichen Extremstellen in die 2. Ableitung ein. Ist dieser Wert $< \ 0$ , handelt es sich um ein Maximum.
Ist [mm] $f''(x_e) [/mm] \ > \ 0$ , liegt ein Minimum vor. Dieses Kriterium nennt man hinreichendes Kriterium.


Gruß
Loddar


Bezug
                
Bezug
Hoch- und Tiefpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 So 06.04.2008
Autor: DerDon

Ah ok!

Also wenn ich z.B. bei f(x) = 0 die Extrempunkte 4, 5 und 6 habe, dann muss ich 4 in f'' einsetzen. Ist dieser Wert dann >0 ist es bei 4 ein Tiefpunkt.

Mit 5 und 6 mache ich das dann genauso und je nachdem was rauskommt, kann ich sehen, ob es ein HOP oder ein TIP ist, richtig?

Bezug
                        
Bezug
Hoch- und Tiefpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 06.04.2008
Autor: Tyskie84

Hallo!

> Ah ok!
>  
> Also wenn ich z.B. bei f(x) = 0 die Extrempunkte 4, 5 und 6
> habe, dann muss ich 4 in f'' einsetzen. Ist dieser Wert
> dann >0 ist es bei 4 ein Tiefpunkt.
>

Nicht ganz wenn du bei f'(x)=0 die Kandidaten 4 , 5 oder 6 erhälst dann musst du diese in f''(x) einsetzen.
Also zb f''(4) kommst nun ein positiver Wert heraus also f''(4)>0 dann haben wir einen Tiefpunkt. Ist dagegen f''(4)<0 dann haben wir einen Hochpunkt.

> Mit 5 und 6 mache ich das dann genauso und je nachdem was
> rauskommt, kann ich sehen, ob es ein HOP oder ein TIP ist,
> richtig?

Ja mit den anderen Kandidaten machst du das genau so.

[hut] Gruß

Bezug
                                
Bezug
Hoch- und Tiefpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 So 06.04.2008
Autor: DerDon

Ah natürlich die von f'(x), nicht von f(x)!
Danke auch an die andere Antwort, aber die dritte Ableitung haben wir noch nicht durchgenommen, trotzdem vielen Dank auch für Deine Hilfe.

"Leider" habe ich noch eine Frage, ich stelle sie jetzt einfach mal an dieser Stelle. Oft wird auch noch das Verhalten im Unendlichen gefragt, wo unser Lehrer immer [mm] \limes_{n\rightarrow\infty} [/mm] oder die negative Variante davon schreibt. Wie genau komme ich denn auf das Verhalten im Unendlichen?

Bezug
                                        
Bezug
Hoch- und Tiefpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 So 06.04.2008
Autor: Tyskie84

Hallo!

Das ist im Prinzip nicht so schwer: Du musst halt schauen was mit der Funktion passiert wenn immer größer werdene Zahlen eingesetzt werden wenn x [mm] \rightarrow \infty [/mm] geht.

Schaue dir folgende Seiten an:

[]Hier
[]hier und []hier

[hut] Gruß

Bezug
                                                
Bezug
Hoch- und Tiefpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 So 06.04.2008
Autor: DerDon

Ich danke recht herzlich.

Bezug
        
Bezug
Hoch- und Tiefpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 06.04.2008
Autor: argl

Erhältst du für die zweite Ableitung für eine der Nullstellen von $f'(x)$ den Wert Null, so musst du die dritte Ableitung mit dem x-Wert überprüfen. Ist die dritte Ableitung ungleich 0, so liegt ein Sattelpunkt vor.

Ist die dritte Ableitung auch Null, so musst du so lange ableiten, bis du eine Ableitung für den x-Wert erhältst, die ungleich Null ist. Ist dies eine ungerade Ableitung (fünfte, siebente, ..., Ableitung) so liegt ein Sattelpunkt vor. Ist diese Ableitung eine gerade Ableitung (sechste, achte, ..., Ableitung) und du erhältst einen Funktionswert $y<0$ so liegt ein Hochpunkt vor, ist der Funktionswert der geraden Ableitung $y>0$ so liegt an der Stelle ein Tiefpunkt vor.

Um die y-Koordinate von Hoch-/Tief-/Sattelpunkten zu ermitteln setzt du
einfach die ermittelten Koordinaten der Nullstellen der ersten Ableitung in die Ausgangsfunktion ein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de