www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Hochpunkt etc beweisen
Hochpunkt etc beweisen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hochpunkt etc beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 27.05.2008
Autor: Kampfkruemel

Aufgabe
Der Graph G einer Funktion f habe an der Stelle x = b einen Hochpunkt. Begründe mit Hilfe einer geeigneten Skizze, dass dann gelten muss:

1. f'(b) = 0

2. f'(a)>0, wenn a<b und f'(c)<0, wenn b<c

d.h. bei x = b ist ein entsprechender Vorzeichenwechsel.

Ich verstehe ehrlich gesagt nur Bahnhof. Kann mir einer helfen?

Liewbe Grüße
Sarah

        
Bezug
Hochpunkt etc beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Di 27.05.2008
Autor: tete

Hallo Kampfkruemel

also mach dir doch mal eine Skizze mit einem Hochpunkt!
Was ein Hochpunkt ist weist du, oder?
Wenn nicht: Ein Hochpunkt ist ein Punkt, an dem die benachbarten Werte kleiner sind als der Punkt selbst.
D.h. Sei an der Stelle [mm] x_{0} [/mm] ein Hochpunkt
[mm] \Rightarrow f(x_{0}- \varepsilon) [/mm] < [mm] f(x_{0}) [/mm] > [mm] f(x_{0}+\varepsilon) [/mm] mit [mm] \varepsilon [/mm] > 0

So, wenn du dir nun klar machst, dass die erste Ableitung die Steigung der Funktion angibt, dann weisst du auch, dass die x-Werte für [mm] x0 [/mm] und danach muss die Funktion wieder fallen, d.h. aber gerade, dass [mm] f'(x_{0}+\varepsilon)<0 [/mm]

Ich hoffe es ist verständlich geworden ... aber mach die auf jeden Fall mal eine Skizze!!! Du siehst es bestimmt!

LG tete [cap]

Bezug
        
Bezug
Hochpunkt etc beweisen: Loesung
Status: (Antwort) fertig Status 
Datum: 22:33 Di 27.05.2008
Autor: maxx

Du sollst beweisen , dass bei x=0 ein vorzeichenwechsel stattfindet.
ich wuerde das somachen :
f(x)=ax³+bx+c
f'(x)=3ax²+b
=> für f'(x) gilt f'(x)=f'(-x)
Des weiteren sollst du das an einer Zeichnung erklären koennen, du sollst es nicht durch eine Zeichnung beweisen.

Zeichne doch einfach eine Achsensymmetrischefunktion dritten grades.
Hoffe das hilft dir , ich bin nich so der erklaerbaer ! :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de