www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Höhenlinien
Höhenlinien < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhenlinien: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 17.09.2011
Autor: EtechProblem

Aufgabe
Geben Sie die Höhenlinien der Funktionen f, g für [mm] g(x_{1}, x_{2})=C, [/mm] beziehungsweise [mm] g(x_{1}, x_{2})=C [/mm] und skizzieren Sie diese:

f: [mm] \IR^{2} \to \IR [/mm] ,  [mm] f(x_{1}, x_{2})= e^{3x_{1} - 4x_{2}} [/mm] mit [mm] C=\bruch{1}{10}, [/mm] C=10, C=1000

g: [mm] \IR^{2} \to \IR [/mm] ,  [mm] g(x_{1}, x_{2})= 3x_{1}^{2}-4x_{2}^{2}+2 [/mm] mit C=2, C=5, C=11


Hallo Leute,

ich habe ein problem mit Höhenlinien und wollte euch um Hilfe bitten. Ich habe in unserem Mathebuch nachgelsen, dass man C und die Funktion gleichsetzt und für jedes c den radius r ausrechnet, aber das war  bei einen Rotationsparaboloids. Ich weis leider cniht was ich hier machen soll. Danke schln mal für die kommende unterstützung :P

LG Etechproblem

        
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Sa 17.09.2011
Autor: leduart

Hallo
zu g
hier solltest du zu [mm] x^2/a^2-y^2/b^2=1 [/mm] umformen und die entsprechenden Hyperbeln zeichnen.
zu f :logarithmieren
Gruss leduart



Bezug
        
Bezug
Höhenlinien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Sa 17.09.2011
Autor: EtechProblem

also rechne ich  bei g so?

[mm] g(x_{1}, x_{2})= 3x_{1}^{2}-4x_{2}^{2}+2=0 [/mm]  
2= [mm] 4x_{2}^{2}+3x_{1}^{2} [/mm]
[mm] \bruch{1}{6}=\bruch{x_{2}^{2}}{3} [/mm] - [mm] \bruch{x_{1}^{2}}{4} [/mm]



Bezug
                
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Sa 17.09.2011
Autor: abakus


> also rechne ich  bei g so?
>  
> [mm]g(x_{1}, x_{2})= 3x_{1}^{2}-4x_{2}^{2}+2=0[/mm]  
> 2= [mm]4x_{2}^{2}+3x_{1}^{2}[/mm]
>  [mm]\bruch{1}{6}=\bruch{x_{2}^{2}}{3}[/mm] - [mm]\bruch{x_{1}^{2}}{4}[/mm]
>  
>  

Hallo,
der Übergang von 2 zu [mm] \bruch{1}{6} [/mm] ist etwas spontan erfolgt?
Wenn du einfach durch 2 teilst, bekommst du mit 1=... eine klarere Hyperbelgleichung.
Gruß Abakus


Bezug
                
Bezug
Höhenlinien: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Sa 17.09.2011
Autor: leduart

Hallo
duwillst doch erst mal g(x1,x2)=2 dann = 5 usw

also a) $  [mm] 3x_{1}^{2}-4x_{2}^{2}+2=2 [/mm] $  
das sind 2 Geraden
dann [mm] 3x_{1}^{2}-4x_{2}^{2}+2=5 [/mm] in die Form [mm] x1^2/a^2-x2^2/b^2=^bringen [/mm]
usw.
Gruss leduart


Bezug
                        
Bezug
Höhenlinien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 18.09.2011
Autor: EtechProblem

vielen dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de