www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Homogen und inhomogene LGS
Homogen und inhomogene LGS < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogen und inhomogene LGS: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:30 So 10.06.2007
Autor: philipp.koelgen

Aufgabe
Sei A= [mm] \pmat{ 3 & -2 & 4 & 2 & 5 & 8 & 7 \\ 1 & 2 & 1 & 6 & 2 & 14 & -1 \\ 7 & 1 & 0 & 4 & 5 & 6 & 9 } [/mm]

und b= [mm] \vektor{-1 \\ 1\\ 0} [/mm]

1) Bestimmen Sie eine Basis des Lösungsraumes des homogenes LGS
Ax=b

2) Beschreiben Sie die Lösungsmenge des inhomogenen linearen LGS ax=b  

Hallo miteinander,

leider hänge ich schon bei Aufgabe 1, da ich seit zwei Stunden vergebens versuche die Matrix mit Hilfe des Gauß Jordan Algorithmus auf Zeilenstufenform zu bringen.

Herauskommen müsste eigentlich:

A= [mm] \pmat{ 1 & 0 & 0 & 18/69 & 47/69 & 12/69 & 101/69 \\ 0 & 1 & 0 & 150/69 & 16/69 & 330/69 & -86/69 \\ 0 & 0 & 1 & 96/69 & 59/69 & 294/69 & 2/69 } [/mm]

Kann mir vielleicht jemand von Euch sagen, welche Umformungsschritte ich benutzen muss?

Und dann hätte ich noch eine Frage zur Aufgabe 2. Muss ich einfach nur die Ausgangsmatrix benutzen am Ende eine vertikalen Strich machen und den Vektor b anfügen und wieder die Matrix auf Zeilenstufenform bringen? Und was muss ich danach machen?

Gruß Philipp




        
Bezug
Homogen und inhomogene LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 So 10.06.2007
Autor: zerocool

Hallo,


1. Schritt: Die Position von Reihe 2 und Reihe 1 wechseln, so dass Reihe 2 oben ist.

Ich bezeichne die Reihen der neuen Matrix, von Oben nach Unten r1, r2, r3

Danach:  r2 = r2 - 3*r1 ->
               r3 = r3 - 7*r1 ->
               r2 = -13*r2     ->
               r3 = 8*r3       ->
               r3 = r2 + r3   ->
               fixiere r3        ->
               r2 = r2*(1/104)     ->
               r3 = r3*(-1/69r)     ->
               r1 = r1 - (5/4)*r3
               r2 = r2 + (1/8)*r3

Gruß,

zerocool

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de