www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Homogene Lösung
Homogene Lösung < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogene Lösung: Aufstellen der Systemfunktion
Status: (Frage) beantwortet Status 
Datum: 11:53 Mo 20.09.2010
Autor: Idefix08

Aufgabe
y[k]+2y[k-1]-y[k-2] = x[k]-2x[k-1]
y[0]=y[1]=1

Hallo,

bei der homogenen Lösung werden die Eingangssignale zu Null, also:

y[k]+2y[k-1]-y[k-2] = 0

Nach der z-Transformation:

Y(z)+ [mm] 2Y(z)*z^{-1}-Y(z)*z^{-2}=0 [/mm]

Bloß was mache ich jetzt mit dem y[0]=y[1]=1
Muss ich es noch dazu addieren???
Y(z)+ [mm] 2Y(z)*z^{-1}-Y(z)*z^{-2} [/mm] +Y(0)+Y(1) =0

Gruß
Idefix

        
Bezug
Homogene Lösung: Randbedingung
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 20.09.2010
Autor: Infinit


Hallo Idefix,
mache Dir erst mal klar, dass Du bei Deiner Differenzengleichung eine Randbedingung einzuhalten hast, um die Lösung eindeutig zu machen. Genau das ist auch im z-Bereich nötig und jetzt stellt sich aber die Frage, wie Du solche einzelnen Funktionswerte mithilfe der z-Transformierten, die sich ja immer auf eine ganze Wertereihe bezieht (das wird leider häufig vergessen) darstellen kannst. Wenn Du Dir die Definition der z-Transformierten anschaust
[mm] F(z) = f(0) + f(1) z^{-1} + f(2) z^{-2} + \dots [/mm]
so kannst Du in dieser Reihe f(0) berechnen, indem Du z gegen Unendlich laufen lässt.  Alle Terme, bis auf f(0), laufen dann gegen Null. Das ist doch schon mal gut, denn so bekommst Du
[mm] f(0) = \lim_{ z \rightarrow \infty} F(z) [/mm]
Wenn Du das Ganze für f(1) machen willst, so nimm die obige Gleichung mal z und Du bekommst auf gleiche Weise
[mm] f(1) = \lim_{ z \rightarrow \infty} z\left[ F(z)-f(0) \right] [/mm]
So drückst Du Deine Randbedingung in Form der z-Transformierten aus.
Viele Grüße,
Infinit

Bezug
                
Bezug
Homogene Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Di 21.09.2010
Autor: Idefix08

Hallo,

vielen Dank erstmal!
Das hab ich so weit verstanden, nur wie setze ich das dann jetzt in die Gleichung ein?

Kann ich nicht auch so vorgehen:
Ich ersetze k mit k+2
y[k]+2y[k-1]-y[k-2] = 0
=> y[k+2]+2y[k+1]-y[k] = 0

und transformiere es dann...

Y(z)*z²-X(0)z²-Y(1)z + 2*[Y(z)z-Y(0)z] - Y(z) = 0


Gruß
Idefix

Bezug
                        
Bezug
Homogene Lösung: Nur Randbedingung
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 22.09.2010
Autor: Infinit

Hallo idefix,
es gibt hier nichts einzusetzen. Das Ganze ist eine Randbedingung, die Du in dieser etwas anderen Form schreibst. Bei einer DGL im Zeitbereich schreibst Du ja auch nicht die Randbedingung in die Gleichung mit rein, sondern sie dient dazu, die Menge der Lösungen an diese Randbedingung anzupassen.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de