Homogenes System < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:01 Mi 28.06.2006 | Autor: | maggi20 |
Halllo!
Ich komme mal wieder mit einer Aufagabe nicht weiter und benötige dringend eure Hilfe. Wenn ich die Lösungsmenge eines linearen Gleichungssystems bestimmen möchte dann ist es doch so, dass wenn RangA=n das GLS eindeutig lösbar und wenn RangA=m universell lösbar. Dann habe ich noch gesehen, dass wenn RangA=n-2 die Lösungsmenege eine Ebene bildet und RangA=n-1 die Lösungen auf einer Geraden liegen. Zählen die beiden letzteren Fälle auch zur universellen Lösbarkeit. Und kann ich sie dann folgendermaßen berechnen: L inhom= Vektor y plus L hom? Vektor y erhalte ich in dem ich die Matrix doch auf Zeilenstufenform bringe und dann eine Variable festsetze und die anderen frei wähle. Dann erhalte ich eine spezielle Lösung. Aber wie komme ich zu den Basisvektoren des homogenen Systems? Kann mir da bitte jemand weiterhelfen? Bitte, bitte, bitte.... !
Und kann ich, wenn das GLD eindeutig lösbar ist den Vektor x dann folgendermaßen berechnen: Vektor x= inv.Matrix mal Vektor b oder Vektor x= detci/detA. Oder gibt es da Ausnahmen?
LG
maggi
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Fr 30.06.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|