www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Homomorphismen ?
Homomorphismen ? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismen ?: Frage
Status: (Frage) beantwortet Status 
Datum: 15:52 Do 02.12.2004
Autor: wolverine2040

Hallo Leute!

Mich quält gerade die genaue Definition von Homomorphismen in der linearen Algebra. Hat da jemand mal ein konkretes Beispiel, wie man sich die Hom(V --> W) genau erklären kann?

Das wäre echt super!




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Homomorphismen ?: lineare Abbildung
Status: (Antwort) fertig Status 
Datum: 21:04 Do 02.12.2004
Autor: Bastiane


> Hallo Leute!
>  
> Mich quält gerade die genaue Definition von Homomorphismen
> in der linearen Algebra. Hat da jemand mal ein konkretes
> Beispiel, wie man sich die Hom(V --> W) genau erklären
> kann?
>  
> Das wäre echt super!
>  

Hallo!
Ja, ich habe auch lange gebraucht, bis ich das verstanden hatte und ich hoffe, dass ich jetzt nicht irgendwas durcheinander bringe. So weit ich mich recht erinnere, ist nämlich ein Homomorphismus nichts anderes als eine lineare Abbildung! :-)
(Vergleich doch mal die Definitionen, ich bin mir wirklich gerade nicht sicher...)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Homomorphismen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Do 02.12.2004
Autor: Marc

Hallo wolverine2040!

> Mich quält gerade die genaue Definition von Homomorphismen
> in der linearen Algebra. Hat da jemand mal ein konkretes
> Beispiel, wie man sich die Hom(V --> W) genau erklären
> kann?
>  
> Das wäre echt super!

Homomorph heißt einfach "strukturerhaltend" bzw. wörtlich übersetzt wahrscheinlich "von gleicher Gestalt".

Ein Homomorphismus ist zunächst einfach eine Abbildung der Elemente einer Menge (mit Verknüpfungen) auf eine andere Menge (mit Verknüpfungen) ab.
Nehmen wir mal als Beispiel eine Abbildung [mm] $\phi$ [/mm] von zwei Gruppen [mm] $(G,\*)$ [/mm] und [mm] $(H,\star)$ [/mm] (Gruppen sind ja Mengen mit einer Verknüpfung).

Gilt dort nun [mm] $\phi(a\*b)=\phi(a)\star\phi(b)$ [/mm] für alle [mm] $a,b\in [/mm] G$, so ist [mm] $\phi$ [/mm] ein (Gruppen-) Homomorphismus. Es werden also nicht nur die Elemente abgebildet, sondern auch die Struktur (genauer werden natürlich nur die Elemente gerade so abgebildet, dass die Struktur erhalten bleibt).
Ob man a und b vor oder nach der Anwendung von [mm] $\phi$ [/mm] verknüpft, spielt keine Rolle.

Dieses Prinzip läßt sich auch auf Mengen mit mehreren Verknüpfungen anwenden, zum Beispiel auf Körper, Ringe etc. und auch Vektorräume.

Wie Bastiane schon bemerkte, sind die Vektorraumhomomorphismen gerade die linearen Abbildungen.

Viele Grüße,
Marc




Bezug
                
Bezug
Homomorphismen ?: Frage
Status: (Frage) beantwortet Status 
Datum: 10:23 Fr 03.12.2004
Autor: wolverine2040

Hallo Leute, ich muß ganz ehrlich sagen, so ganz habe ich's noch nicht verstanden!

Was mir enorm helfen würde wäre ein Beispiel im Bereich der Vektorräume. Ich denke, dann könnte ich mir das richtige darunter vorstellen.

Homomorphismen sind doch schon sehr abstrakt

Bezug
                        
Bezug
Homomorphismen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Fr 03.12.2004
Autor: Julius

Hallo Wolverine!

Ich empfehle dir ganz dringend []diesen wunderschönen Artikel.

Eine lineare Abbildung zwischen endlichdimensionalen Vektorräumen ist nichts weiter als die Multiplikation einer Matrix mit einem Vektor, in geeigneten Koordinaten.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de