www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Homomorphismus
Homomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus: Gruppenhomom.- Trivialität?
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 25.03.2008
Autor: Riesenradfahrrad

Ich lerne gerade ein Begriffe der Linearen Algebra und mir ist dabei der Homomorphismus untergekommen. Mir ist im Prinzip klar, das dieser ein "Werkzeug" zu Vergleich von Srukturen zwischen z.B. zwei Gruppen sein soll.
Jedoch komme ich beim lesen der Definition ein wenig ins Schmunzeln (vielleicht aus Blödheit..), denn:

" Seien [mm](G_1,\circ_1)[/mm] und [mm](G_2,\circ_2)[/mm] Gruppen und [mm]f:G_1\rightarrow G_2[/mm] eine Abbildung. [mm]f[/mm] heißt Homomorphismus, falls gilt
[mm]f(a\circ_1 b)=f(a)\circ_2 f(b)[/mm]

[mm](G_1,\circ_1)[/mm] und [mm](G_2,\circ_2)[/mm] heißen homomorph, wenn es solch einen Homomorphismus gibt.

Aber!! Man kann doch immer eine Abbildung [mm]f[/mm] nehmen, die alle Elemente von [mm]G_1[/mm] auf das neutrale Element von [mm]G_2[/mm] abbildet. Und das ist trivial.


Was ist dann das "Tolle" an der Eigenschaft Homomorphie?


Vielen Dank im Voraus,
Lorenz

        
Bezug
Homomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Di 25.03.2008
Autor: pelzig


> Aber!! Man kann doch immer eine Abbildung [mm]f[/mm] nehmen, die
> alle Elemente von [mm]G_1[/mm] auf das neutrale Element von [mm]G_2[/mm]
> abbildet. Und das ist trivial.

Richtig, das ist eben der "triviale Homomorphismus".

> Was ist dann das "Tolle" an der Eigenschaft Homomorphie?

Nix. Wahrscheinlich wurde der Begriff in deinem Buch (oder welche Quelle auch immer du verwendest) nur der Vollständigkeit halber eingeführt (es gibt auch kein Symbol dafür), da diese Begriffsbildung ja analog zu [mm] "Isomorphismus"$\to$"Isomorphie" [/mm] ist, und Isomorphie ist nun wirklich eine sehr bedeutende Eigenschaft.

Bezug
                
Bezug
Homomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Di 25.03.2008
Autor: Riesenradfahrrad

Hallo pelzig,

herzlichen Dank für die schnelle Antwort!
Aber trotzdem schon komisch, dass man für so einen uninteressanten Verhalt einen Begriff prägt...

Greez,
Lorenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de