Horner-Schema < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:00 Sa 14.11.2009 | Autor: | az118 |
Aufgabe | Gegeben ist das Polynom p4 durch
p4(x) = [mm] a4*x^{4} [/mm] + [mm] a3*x^{3} [/mm] + [mm] a2*x^{2} [/mm] + a1*x + a0.
Berechnen Sie durch das vollständige Horner-Schema an der Stelle μ = −1 alle Koeffizienten
von pi(x), i = 1, . . . , 4, wenn von p4(x) bekannt ist, dass a4 = a0 = 2 und a1 +a2 +a3 = 3 gilt.
Außerdem sind bekannt p4(−1) = 3 und p3(−1) = −10
(pk(x) = pk−1(x)(x − μ) + pk(μ)).
|
Hallo, ich habe mal versucht die Aufgabe zu bearbeiten, aber da stimmt was nicht. Also ich habe a1=a2=a3=1 gesetzt und das war wahrscheinlich schon falsch, weil wenn ich das Horner-Schema jetzt anwende, bekomme ich zwar auch p4(-1)=3 raus aber nicht p3(-1)=-10 ???
Weiß nicht wie ich jetzt die Koeffizienten raus bekomme?
|
|
|
|
Hallo,
recht hast du. Es war falsch, einfach [mm] \(a_1=a_2=a_3=1\) [/mm] zu setzen. Du sollst ja die Koeffizienten erst bestimmen.
Was klar ist, ist, dass [mm] \(a_0=a_4=2\) [/mm] schon bestimmt sind. Bleiben drei Unbekannte, die du mit Hilfe des Horner-Schemas lösen kannst.
Schreibe dieses einfach allgemein (mit [mm] \(a_1, a_2, a_3\)) [/mm] auf. Damit erhältst du eine weiter Gleichung. Nun noch [mm] \(p_3(x)\) [/mm] ins Schema pressen, ausrechnen und Gleichung aufschreiben.
Was du erhältst sind drei Gleichungen und drei Unbekannte... Sollte also kein Problem sein, das aufzulösen.
Viel Erfolg,
Roland.
|
|
|
|