www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Hüllfläche einer Kugel
Hüllfläche einer Kugel < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hüllfläche einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Fr 13.01.2012
Autor: lzaman

Hallo, ich will das wirklich verstehen, aber am Doppelintegral happerts noch.

[mm] \oint \oint_{Kugel}\vec{D}\cdot d\vec{A}=D\cdot 4\pi\cdot r^2=Q[/mm].

Wieso ist das Doppelringintegral von dem Flächenvektor einer Kugel genau die Oberfläche einer Kugel? Kann mir das vielleicht jemand kurz und knapp erläutern? Oder ist das eine Formel, die man sich so merken muss?
Ich suche immer noch den Durchbruch...

Danke


        
Bezug
Hüllfläche einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Fr 13.01.2012
Autor: lzaman


Ich glaube ich habs gefunden. Darf ich das so sagen und mir die Frage damit beantworten:

Das Integral über die Größe aller Flächenelemente ergibt den Flächeninhalt A,

[mm]\oint dA=A[/mm] ???

Danke



Bezug
                
Bezug
Hüllfläche einer Kugel: Ein Beispiel
Status: (Antwort) fertig Status 
Datum: 20:01 Fr 13.01.2012
Autor: Marcel08

Hallo!



Der Gauß´sche Gesetz der Elektrostatik lautet wie folgt:

(1) [mm] \integral_{\partial{V}}^{}{\vec{D}*d\vec{A}}=\integral_{V}^{}{\rho{dV}}, [/mm] mit [mm] \rho=div\vec{D}. [/mm]


Dieser Integralsatz stellt eine Verbindung zwischen einem Oberflächenintegral und einem Volumenintegral über ein Vektorfeld dar. In einem sphärischen Koordinatensystem ergibt sich dann beispielsweise mit

[mm] \vec{D}=D_{r}(r)\vec{e}_{r} [/mm] und [mm] d\vec{A}=r^{2}sin(\vartheta)d\vartheta{d\varphi}\vec{e}_{r} [/mm]


für die linke Seite aus Gleichung (1) das geschlossene Hüllflächenintegral über die Normalkomponente der elektrischen Verschiebungsdichte zu

[mm] \integral_{\varphi=0}^{2\pi}{\integral_{\vartheta=0}^{\pi}{D_{r}(r)\underbrace{\vec{e}_{r}*\vec{e}_{r}}_{=1}r^{2}sin(\vartheta)d\vartheta{d\varphi}}}=D_{r}(r)4\pi{r^{2}}, [/mm]


wobei sich die Integration zwecks Erhalt einer vollständigen Kugeloberfläche über den Azimutwinkel [mm] \varphi, [/mm] mit [mm] \varphi\in[0,2\pi] [/mm] und den Polarwinkel [mm] \vartheta, [/mm] mit [mm] \vartheta\in[0,\pi] [/mm] erstreckt.





Viele Grüße, Marcel

Bezug
        
Bezug
Hüllfläche einer Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Fr 13.01.2012
Autor: leduart

Hallo
das setzt vorraus, dass [mm] \vec{D} [/mm] und vec{dA} parallel sind also d swnkrecht auf der Kugeloberfläche und D=const
dann hast du einfach D *Integral über dA, das als zwei Ringintegrale zu schreiben hab ich allerdings noch nie gesehen. i.A. schreibt man ein integral und daran Rand von K.
dass das Ganze Q  inerhhalb der geschlossenen fläche ergibt ist ein Satz!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de