www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Hüllreihe
Hüllreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hüllreihe: Tipp
Status: (Frage) überfällig Status 
Datum: 12:17 So 07.11.2010
Autor: mathiko

Aufgabe
Gegeben sei die Funktion [mm] f:\IR->\IR, [/mm] mit f(x)=1,wenn x Element [mm] \IQ \cap [/mm] [0,1] und f(x)=0 sonst.
Konstruiere eine Folge von Hüllreihen [mm] \phi_n [/mm] von f, deren Inhalte gegen 0 konvergieren.

Hallo!
Bei obiger Aufgabe fehlt mir komplett der Ansatz, auch wenn wir noch den Hinweis bekommen haben, eine Abzählung [mm] a_k [/mm] (k Element [mm] \IN) [/mm] von [mm] \IQ \cap [/mm] [0;1] zu verwenden.

Definitionen sind mir soweit bekannt:
Hüllreihe: [mm] \phi=\summe_{k=1}^{\infty}c_k*1_(Q_k) [/mm]
Inhalt [mm] I(\phi)=\summe_{k=1}^{\infty}c_k*v(Q_k) [/mm] mit [mm] v(Q_k)=Volumen [/mm] des Quaders
Und es soll [mm] \limes_{n\rightarrow\infty}I(\phi_n)=0 [/mm] seinalso muss [mm] I(\phi) [/mm] eine gegen 0 konvergierende Reihe sein.
Die Abzählung wäre [mm] \Q={a_1,a_2,...} [/mm]

Aber wie mache ich nun weiter?
Viele Grüße von mathiko

        
Bezug
Hüllreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Di 09.11.2010
Autor: meili

Hallo mathiko,

> Gegeben sei die Funktion [mm]f:\IR->\IR,[/mm] mit f(x)=1,wenn x
> Element [mm]\IQ \cap[/mm] [0,1] und f(x)=0 sonst.
>  Konstruiere eine Folge von Hüllreihen [mm]\phi_n[/mm] von f, deren
> Inhalte gegen 0 konvergieren.
>  Hallo!
>  Bei obiger Aufgabe fehlt mir komplett der Ansatz, auch
> wenn wir noch den Hinweis bekommen haben, eine Abzählung
> [mm]a_k[/mm] (k Element [mm]\IN)[/mm] von [mm]\IQ \cap[/mm] [0;1] zu verwenden.
>  
> Definitionen sind mir soweit bekannt:
>  Hüllreihe: [mm]\phi=\summe_{k=1}^{\infty}c_k*1_(Q_k)[/mm]
>  Inhalt [mm]I(\phi)=\summe_{k=1}^{\infty}c_k*v(Q_k)[/mm] mit
> [mm]v(Q_k)=Volumen[/mm] des Quaders
>  Und es soll [mm]\limes_{n\rightarrow\infty}I(\phi_n)=0[/mm]
> seinalso muss [mm]I(\phi)[/mm] eine gegen 0 konvergierende Reihe
> sein.
>  Die Abzählung wäre [mm]\Q={a_1,a_2,...}[/mm]
>  
> Aber wie mache ich nun weiter?
>  Viele Grüße von mathiko

obwohl ich nicht recht weiss, welche Eigenschaften eine Folge von Hüllreihen [mm]\phi_n[/mm] von f haben muss, versuche ich eine Antwort.

Ich stelle mir vor, die [mm] $Q_k$ [/mm] sind Intervalle, die jeweils um die x [mm] $\in$[/mm]   [mm]\IQ \cap[/mm] [0,1] liegen. [mm]\IQ \cap[/mm] [0,1] ist abzählbar (siehe []Cantors erstes Diagonalargument), daher eine Abzählung
[mm]a_k[/mm] (k Element [mm]\IN)[/mm].
Die [mm] $Q_k$ [/mm] so schmal machen, dass  [mm]\limes_{n\rightarrow\infty}I(\phi_n)=0[/mm].

Gruß
meili


Bezug
                
Bezug
Hüllreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Mo 15.11.2010
Autor: mathiko

Hallo meili!

Danke!!! (Auch, wenn ich etwas spät dran bin...)
Es hat geklappt :)

Viele Grüße
mathiko

Bezug
        
Bezug
Hüllreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 10.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Hüllreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Mi 10.11.2010
Autor: fred97

Sei [mm] r_1,r_2,r_3, [/mm] ... eine Abzählung der rationalen Zahlen in [0,1]

Für n, k [mm] \in \IN [/mm] setze

             [mm] $Q_k^{(n)}:= (r_k-\bruch{1}{n*2^k}, r_k+\bruch{1}{n*2^k})$ [/mm]

und

              [mm] \phi_n:= \summe_{k=1}^{\infty}1_{Q_k^{(n)}} [/mm]


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de