www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Hyperbelgleichung überprüfen
Hyperbelgleichung überprüfen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperbelgleichung überprüfen: Hinweis
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 30.01.2010
Autor: Zeitlos

Aufgabe
Hyperbel 4x²-3y³=36
Berechne die Asymptoten

Anm: nur der 1. Schritt der Aufgabe

Ich weiß einfach nicht mehr, wie man die Hyperbelgleichung überprüft.
In diesem Fall könnte man annehmen, dass b²=4 a²=2 - was natürlich nicht der Fall ist da a²*b²=36 aber 4*2=8.
Wie finde ich die tatsächlichen Werte von a und b heraus ?

        
Bezug
Hyperbelgleichung überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 30.01.2010
Autor: abakus


> Hyperbel 4x²-3y³=36
>  Berechne die Asymptoten
>  
> Anm: nur der 1. Schritt der Aufgabe
>  Ich weiß einfach nicht mehr, wie man die
> Hyperbelgleichung überprüft.
>  In diesem Fall könnte man annehmen, dass b²=4 a²=2 -
> was natürlich nicht der Fall ist da a²*b²=36 aber
> 4*2=8.
>  Wie finde ich die tatsächlichen Werte von a und b heraus
> ?

Hallo,
aus 4x²-3y³=36 folgt
[mm] y=\pm\wurzel{\bruch{4x^2-36}{3}}=\pm\wurzel{\bruch{4}{3}}\wurzel{x^2-9} [/mm]
Wenn x gegen unendlich geht, geht dieser Ausdruck gegen [mm] \pm\wurzel{\bruch{4}{3}}x. [/mm]
Gruß Abakus


Bezug
                
Bezug
Hyperbelgleichung überprüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 So 31.01.2010
Autor: Zeitlos

Aber 4 und 3 sind ja eben nicht die tatsächlichen Werte von a und b - die ganze Hyperbelgleichung wurde durch n gekürzt - da a²*b²= 36 aber 4*3=12

so kann ich doch nicht annehmen, dass die Asymptote
die y= [mm] \pm \bruch{4}{3} [/mm] *x
ist.


Bezug
        
Bezug
Hyperbelgleichung überprüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 So 31.01.2010
Autor: Al-Chwarizmi


> Hyperbel 4x²-3y³=36
>  Berechne die Asymptoten
>  
> Anm: nur der 1. Schritt der Aufgabe
>  Ich weiß einfach nicht mehr, wie man die
> Hyperbelgleichung überprüft.
>  In diesem Fall könnte man annehmen, dass b²=4 a²=2 -
> was natürlich nicht der Fall ist da a²*b²=36 aber
> 4*2=8.
>  Wie finde ich die tatsächlichen Werte von a und b heraus ?


Ist der Exponent 3 bei y "nur" ein Schreibfehler ?
(dann wäre die Kurve keine Hyperbel)

Um bei einer (richtigen) Hyperbelgleichung der
Form  [mm] K\,x^2-L\,y^2=M [/mm] die Halbachsen a und b zu
bestimmen, dividiert man durch M und bringt die
Gleichung auf die Form

      [mm] $\frac{x^2}{a^2}-\frac{y^2}{b^2}\ [/mm] =\ 1$

LG


Bezug
                
Bezug
Hyperbelgleichung überprüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 So 31.01.2010
Autor: Zeitlos

Genau das was ich gesucht habe.
danke danke danke.

und entschuldigung für den tippfehler -.-

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de