www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Hyperebene, Skalarprodukt
Hyperebene, Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene, Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:05 Mi 06.07.2016
Autor: impliziteFunktion

Aufgabe
Wir betrachten [mm] $\mathbb{R}^n$ [/mm] mit dem Standard-Skalarprodukt und bezeichnen mit $X$ die Menge aller affinen Hyperebenen im [mm] $\mathbb{R}^n$, [/mm] also Mengen der Form

[mm] $H_{v,x}=\{y\in\mathbb{R}^n:\langle v,x\rangle=\lange v,y\rangle\}$ [/mm] mit [mm] $v,x\in\mathbb{R}^n$ [/mm] und [mm] $v\neq [/mm] 0$. Für jedes [mm] $p\in\mathbb{R}^n$ [/mm] sei [mm] $U_p=\{H\in X:p\notin H\}$ [/mm] und [mm] $\phi_p(H)\in\mathbb{R}^n$ [/mm] der Fusspunkt des Lotes von $p$ auf $H$.

a) Bestimmen Sie [mm] $\phi_p(U_p)$ [/mm] und zeigen Sie, dass [mm] $\phi_p^{-1}(x)=H_{p-x,x}$ [/mm] für alle [mm] $p,x\in\mathbb{R}^n$ [/mm]

b) Geben Sie eine Formel für [mm] $\phi_p(H_{v,x})$ [/mm] für alle [mm] $p,v,x\in\mathbb{R}^n$ [/mm] an.

Hallo,

ich habe eine Frage zu dieser Aufgabe.
Bei a) soll ich den Fusspunkt des Lotes von $p$ auf [mm] $U_p$ [/mm] bestimmen.  Also

[mm] $\phi_p(U_p)$ [/mm] dies ist doch anschaulich der Vektor, welcher Senkrecht auf [mm] $U_p$ [/mm] steht, oder?

Was ist hier zu tun?
Da [mm] $\phi_p^{-1}(x)$ [/mm] gesucht ist, muss [mm] $\phi_p$ [/mm] doch eine Funktion sein, oder?

Vielen Dank im voraus.

        
Bezug
Hyperebene, Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 05:51 Mi 06.07.2016
Autor: fred97


> Wir betrachten [mm]\mathbb{R}^n[/mm] mit dem Standard-Skalarprodukt
> und bezeichnen mit [mm]X[/mm] die Menge aller affinen Hyperebenen im
> [mm]\mathbb{R}^n[/mm], also Mengen der Form
>  
> [mm]H_{v,x}=\{y\in\mathbb{R}^n:\langle v,x\rangle=\lange v,y\rangle\}[/mm]
> mit [mm]v,x\in\mathbb{R}^n[/mm] und [mm]v\neq 0[/mm]. Für jedes
> [mm]p\in\mathbb{R}^n[/mm] sei [mm]U_p=\{H\in X:p\notin H\}[/mm] und
> [mm]\phi_p(H)\in\mathbb{R}^n[/mm] der Fusspunkt des Lotes von [mm]p[/mm] auf
> [mm]H[/mm].
>  
> a) Bestimmen Sie [mm]\phi_p(U_p)[/mm] und zeigen Sie, dass
> [mm]\phi_p^{-1}(x)=H_{p-x,x}[/mm] für alle [mm]p,x\in\mathbb{R}^n[/mm]
>  
> b) Geben Sie eine Formel für [mm]\phi_p(H_{v,x})[/mm] für alle
> [mm]p,v,x\in\mathbb{R}^n[/mm] an.
>  Hallo,
>  
> ich habe eine Frage zu dieser Aufgabe.
>  Bei a) soll ich den Fusspunkt des Lotes von [mm]p[/mm] auf [mm]U_p[/mm]
> bestimmen.

Nein. Du sollst den Fusspunkt des Lotes von [mm]p[/mm] auf [mm]H[/mm] bestimmen.





>  Also
>  
> [mm]\phi_p(U_p)[/mm] dies ist doch anschaulich der Vektor, welcher
> Senkrecht auf [mm]U_p[/mm] steht, oder?


Nein. [mm]\phi_p(H)[/mm]  ist  anschaulich der Vektor, welcher
senkrecht auf [mm]H[/mm] steht.

>  
> Was ist hier zu tun?
>  Da [mm]\phi_p^{-1}(x)[/mm] gesucht ist, muss [mm]\phi_p[/mm] doch eine
> Funktion sein, oder?


Ja, und zwar:  [mm] \phi_p:X \to \IR^n. [/mm]

FRED

>
> Vielen Dank im voraus.


Bezug
                
Bezug
Hyperebene, Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Mi 06.07.2016
Autor: impliziteFunktion


> Nein. $ [mm] \phi_p(H) [/mm] $  ist  anschaulich der Vektor, welcher
> senkrecht auf H steht.

Ja, aber in Aufgabenteil a) ist doch nach [mm] $\phi_p(U_p)$ [/mm] gefragt. Also der Vektor welcher senkrecht auf [mm] $U_p$ [/mm] steht, oder?

> Du sollst den Fusspunkt des Lotes von p auf H bestimmen.

Gibt es dafür eine spezielle Vorgehensweise?

Bezug
                        
Bezug
Hyperebene, Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 06.07.2016
Autor: fred97


> > Nein. [mm]\phi_p(H)[/mm]  ist  anschaulich der Vektor, welcher
> > senkrecht auf H steht.
>
> Ja, aber in Aufgabenteil a) ist doch nach [mm]\phi_p(U_p)[/mm]
> gefragt. Also der Vektor welcher senkrecht auf [mm]U_p[/mm] steht,
> oder?

[mm] U_p [/mm] und [mm]\phi_p(U_p)[/mm]  sind doch Mengen !!


>  
> > Du sollst den Fusspunkt des Lotes von p auf H bestimmen.

Bestimme die Gerade g durch p, die senkrecht auf H steht. Bestimme den Schnittpunkt von g und H.

FRED

>  
> Gibt es dafür eine spezielle Vorgehensweise?


Bezug
                                
Bezug
Hyperebene, Skalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:22 Mi 06.07.2016
Autor: impliziteFunktion

Soll $H$ eine beliebige Hyperebene sein?

Ich weiß leider nicht, wie ich diese Gerade $g$ angeben soll.

Bezug
                                        
Bezug
Hyperebene, Skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 08.07.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de