www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Hyperebene im Dualraum
Hyperebene im Dualraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene im Dualraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Mo 24.11.2008
Autor: Peter17

Aufgabe
Geben Sie drei verschiedene Linearformen [mm] l_{i}\* :R^{4x1} \to [/mm] R (i [mm] \in [/mm] {1,2,3}) und eine Hyperebene H [mm] \subset R^{4x1} [/mm] so an, dass folgende beide Eigenschaften gelten:

1. Die Familie [mm] (l_{1}\*, l_{2}\*, l_{3}\*) [/mm] ist linear unabhängig in [mm] (R^{4x1})\* [/mm]
2. Die drei Einschränkungen [mm] l_{i}\*|H [/mm] sind alle nicht trivial und bilden eine linear abhängige Familie von [mm] H\*. [/mm]

An diesem Beispiel stize ich leider schon länger. Ich hätte als [mm] l_{1}={1,0,0,0}, l_{2}={0,1,0,0} [/mm] etc. genommen. Aber wie gebe ich eine Hyperbene an bzw. wie ist die zweite Forderung zu verstehen?

Ich hoffe ihr könnt mir weiterhelfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hyperebene im Dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Mo 24.11.2008
Autor: angela.h.b.


> Geben Sie drei verschiedene Linearformen [mm]l_{i}\* :R^{4x1} \to[/mm]
> R (i [mm]\in[/mm] {1,2,3}) und eine Hyperebene H [mm]\subset R^{4x1}[/mm] so
> an, dass folgende beide Eigenschaften gelten:
>
> 1. Die Familie [mm](l_{1}\*, l_{2}\*, l_{3}\*)[/mm] ist linear
> unabhängig in [mm](R^{4x1})\*[/mm]
>  2. Die drei Einschränkungen [mm]l_{i}\*|H[/mm] sind alle nicht
> trivial und bilden eine linear abhängige Familie von [mm]H\*.[/mm]
>  An diesem Beispiel stize ich leider schon länger. Ich
> hätte als [mm]l_{1}={1,0,0,0}, l_{2}={0,1,0,0}[/mm] etc. genommen.
> Aber wie gebe ich eine Hyperbene an bzw. wie ist die zweite
> Forderung zu verstehen?

>

Hallo,

die Linearformen sollen auf H nicht die Nullabbildung sein.


Such Dir eine Hyperebene H des [mm] \IR^4 [/mm] aus, also einen dreidimensionalen Unterraum.

Diese wird von drei l.u. Vektoren [mm] (v_1, v_2, v_3) [/mm] aufgespannt.

Ergänze diese Basis durch einen Vektor [mm] v_4 [/mm] zu einer Basis des [mm] \IR^4. [/mm]

Stell nun die zu dieser Basis duale Basis auf. Der Kern des 4. Basisvektors der dualen Basis ist gerade H, und die anderen Basisvektoren sind auf H nicht die Nullabbildung.


Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de