www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Hypergeom. Ver. Test
Hypergeom. Ver. Test < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypergeom. Ver. Test: Hypothesentest
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 03.02.2009
Autor: RalU

Aufgabe
Hallo. Es geht um folgende Aufgabe.

In der Endkontrolle werden 3 Stück von insgesamt 9 priduzierenden Maschinen eingehend geprüft.
a) Berechnen Sie die W'keit, dass keine der geprüften Maschinene defekt ist. Gehen Sie davon aus, dass M=5 der produzierten Maschinen defekt sind.
b) Wenn in der Stichprobe keine defekten Maschinen gefunden werden, entscheidet man, dass weniger als 5 defekte Maschinen produziert werden. Welches Niveau hat dieser Test mit den beiden Hypothesen H0:M>=5 und H1 M<5 und der Teststatistik T: "Anzahl der defekten Maschinen in der Stickprobe" ?

zu a)
Hypergeometrische Verteilung mit:
N=9
M=5
n=3
m=x=0

[mm] P(x=0)=\bruch{\vektor{M \\ m}*\vektor{N - M \\ n - m}}{\vektor{N \\ n}} [/mm] = [mm] \bruch{1}{3} [/mm]

Ist das korrekt?

zu b) Wie bekommt man denn das Nivau raus?

Gruß, Ralf

        
Bezug
Hypergeom. Ver. Test: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Di 03.02.2009
Autor: luis52

Moin  Ralf,

*ich* rechne so:

[mm] P(X=0)=\bruch{\vektor{M \\ m}\cdot{}\vektor{N - M \\ n - m}}{\vektor{N \\ n}} [/mm]  = [mm] \bruch{\vektor{5 \\ 0}\cdot{}\vektor{4 \\ 3}}{\vektor{9 \\ 6}}=0.04762 [/mm] .

Das (Signifikanz-)Niveau des Tests ist die maximale Wsk dafuer, den Fehler 1. Art zu begehen, d.h.  $T=0$ zu beobachten, wenn [mm] $H_0:M\ge [/mm] 5$ zutrifft.  Du musst also

$ [mm] P(X=0)=\bruch{\vektor{M \\ 0}\cdot{}\vektor{9 - M \\ 3 - m}}{\vektor{9 \\ 6}}$ [/mm]

fuer M=5,6,7,8,9 berechnen. Man kann zeigen, dass das Maximum bei M=5 liegt. Das Niveau ist also 0.04762.


vg Luis


Bezug
                
Bezug
Hypergeom. Ver. Test: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 10:18 Mi 04.02.2009
Autor: RalU

Vielen Dank.
>  
> *ich* rechne so:
>  
> [mm]P(X=0)=\bruch{\vektor{M \\ m}\cdot{}\vektor{N - M \\ n - m}}{\vektor{N \\ n}}[/mm]
>  = [mm]\bruch{\vektor{5 \\ 0}\cdot{}\vektor{4 \\ 3}}{\vektor{9 \\ 6}}=0.04762[/mm]
> .

Ich denke mal, das das deine Lösung zum Teil a) ist oder?
Warum setzt du beim n überm Bruchstrich n=3 ein und beim n unterm Bruchstrick n=6?

Danke für den Hinweis zu Teil b)
Gruß, Ralf

Bezug
                        
Bezug
Hypergeom. Ver. Test: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Mi 04.02.2009
Autor: luis52


> > .
>  Ich denke mal, das das deine Lösung zum Teil a) ist oder?

[ok]

>  Warum setzt du beim n überm Bruchstrich n=3 ein und beim n
> unterm Bruchstrick n=6?

Hab mich verschrieben. Es heisst natuerlich n=3. Aber die Rechnung ist korrekt.

>  
> Danke für den Hinweis zu Teil b)

Gerne.

vg Luis



Bezug
        
Bezug
Hypergeom. Ver. Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Mo 09.02.2009
Autor: lena17

Wie bist du auf Hypergeometrische Verteilung gekommen?

Bezug
                
Bezug
Hypergeom. Ver. Test: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 09.02.2009
Autor: luis52


> Wie bist du auf Hypergeometrische Verteilung gekommen?

Moin lena17,

was weisst du denn ueber die Hypergeometrische Verteilung?

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de