www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Hypergeometrische Verteilung
Hypergeometrische Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypergeometrische Verteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:22 Di 01.05.2012
Autor: hubbel

Aufgabe
Ein Sortiment von 20 Teilen gelte als gut, wenn es zwei defekte
Teile hat (oder weniger), und als schlecht, falls es 4 defekte Teile enthält (oder
mehr). Käufer und Verkäufer des Sortiments kommen überein, 4 zufällig
herausgegriffene Teile zu testen. Nur wenn alle 4 Teile in Ordnung sind, findet
der Kauf statt. Der Verkäufer trägt bei diesem Verfahren das Risiko, ein gutes
Sortiment nicht zu verkaufen, der Käufer, ein schlechtes Sortiment zu kaufen.
Wer trägt das größere Risiko? Man vergleiche die beiden Extremfälle.

Es hat aufjedenfall etwas mit der Hypergeometrischen Verteilung zu tun, nur wie wenn ich die an? Die Extremfällt sind ja ganz einfach, dass der Verkäufer ein gutes Sortiment nicht loswird und der Käuft ein schlechtes kauft.

Habe bei Wikipedia mal nachgesehen, wie der Formel lautet:

[mm] P(X=k)=\left \bruch{{N \choose k}{N-M \choose n-k}}{{N \choose n}} \right [/mm]

Anzahl N der Elemente einer Grundgesamtheit.

Anzahl M der Elemente mit einer bestimmten Eigenschaft in dieser Grundmenge

Anzahl n der Elemente in einer Stichprobe.

http://de.wikipedia.org/wiki/Hypergeometrische_Verteilung

Mein N ist 20, ist klar und n ist 4, nur was ist M bzw. k?


        
Bezug
Hypergeometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 03.05.2012
Autor: meili

Hallo,

> Ein Sortiment von 20 Teilen gelte als gut, wenn es zwei
> defekte
>  Teile hat (oder weniger), und als schlecht, falls es 4
> defekte Teile enthält (oder
>  mehr). Käufer und Verkäufer des Sortiments kommen
> überein, 4 zufällig
>  herausgegriffene Teile zu testen. Nur wenn alle 4 Teile in
> Ordnung sind, findet
>  der Kauf statt. Der Verkäufer trägt bei diesem Verfahren
> das Risiko, ein gutes
>  Sortiment nicht zu verkaufen, der Käufer, ein schlechtes
> Sortiment zu kaufen.
>  Wer trägt das größere Risiko? Man vergleiche die beiden
> Extremfälle.
>  Es hat aufjedenfall etwas mit der Hypergeometrischen
> Verteilung zu tun, nur wie wenn ich die an? Die
> Extremfällt sind ja ganz einfach, dass der Verkäufer ein
> gutes Sortiment nicht loswird und der Käuft ein schlechtes
> kauft.
>  
> Habe bei Wikipedia mal nachgesehen, wie der Formel lautet:
>  
> [mm]P(X=k)=\left \bruch{{N \choose k}{N-M \choose n-k}}{{N \choose n}} \right[/mm]
>  
> Anzahl N der Elemente einer Grundgesamtheit.
>  
> Anzahl M der Elemente mit einer bestimmten Eigenschaft in
> dieser Grundmenge
>  
> Anzahl n der Elemente in einer Stichprobe.
>  
> http://de.wikipedia.org/wiki/Hypergeometrische_Verteilung
>  
> Mein N ist 20, ist klar und n ist 4, nur was ist M bzw. k?

M: Anzahl der defekten Teile im Sortiment.
(M [mm] $\le$ [/mm] 2, wenn Sortiment gut;
M [mm] $\ge$ [/mm] 4, wenn Sortiment schlecht.)

k: Anzahl der defekten Teile in der Stichprobe von n = 4 geprüften Teile.
(k = 0, dann Sortiment als gut akzepiert;
k [mm] $\ge$ [/mm] 1, dann Sortiment als schlecht beurteilt)

>  

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de