www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - IR aus IC gewinnen
IR aus IC gewinnen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

IR aus IC gewinnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Mi 31.12.2014
Autor: UniversellesObjekt

Hallo zusammen,

in den Anfänger-Vorlesungen zur Analysis ist es ja oft so, dass die reellen Zahlen "vom Himmel fallen" durch Axiome und man daraus die kleineren Zahlbereiche konstruiert: [mm] $\IN$ [/mm] ist der kleinste Unterhalbring, [mm] $\IZ$ [/mm] der kleinste Unterring, [mm] $\IQ$ [/mm] der kleinste Unterkörper, und dann konstruiert man [mm] $\IC$ [/mm] als [mm] $\IR$-Algebra [/mm] mit unterliegendem Vektorraum [mm] $\IR^2$ [/mm] und zeigt, dass das ein Körper ist.

Meine Frage ist, ob man auch mit [mm] $\IC$ [/mm] anfangen könnte und dann [mm] $\IR$ [/mm] als Unterkörper charakterisieren könnte. Wie ginge das? Oder man könnte auch [mm] $\IC$ [/mm] konstruieren ohne [mm] $\IR$ [/mm] zu konstruieren, beispielsweise nimmt man [mm] $\IQ$, [/mm] adjungiert eine Nullstelle von [mm] $X^2+1$, [/mm] zeigt, dass das als unterliegenden VR [mm] $\IQ^2$ [/mm] hat, nimmt die Produktmetrik von [mm] $\IQ$ [/mm] und bildet die Cauchy-Vervollständigung. Wie könnte ich hierin die reellen Zahlen wiederfinden? (Natürlich als topologischer Abschluss von [mm] $\IQ$, [/mm] aber mir geht es mehr um algebraische Eigenschaften.)

Beispielsweise kann man [mm] $\IC$ [/mm] auch als bis auf Isomorphie eindeutigen algebraisch abgeschlossenen Körper der Charakteristik $0$ definieren, der als Mächtigkeit das Kontinuum hat. Das käme den reellen-Zahlen-Axiomen gleich. Wie finde ich hier jetzt [mm] $\IR$ [/mm] wieder?

Liebe Grüße,
UniversellesObjekt

        
Bezug
IR aus IC gewinnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 31.12.2014
Autor: hippias

Haette man sich [mm] $\IC$ [/mm] irgendwoher beschafft, so koennte man so konstruieren: In der Theorie formal reeller Koerper gibt es folgenden Satz von Artin: Sei $C$ ein algebraisch abgeschlossener Koerper und [mm] $K\leq [/mm] C$ echter Teilkoerper. Ist [mm] $\dim_{K} [/mm] C$ endlich, so existiert [mm] $i\in [/mm] C$, sodass $C=K(i)$ und [mm] $i^{2}+1=0$. [/mm] Darueber hinaus ist $K$ dann reell abgeschlossen.

Aber es waere wohl ZIEMLICH unnatuerlich darueber [mm] $\IR$ [/mm] einzufuehren. Aber vielleicht hat jemand noch eine bessere Idee (oder Du hast etwas anderes gemeint).

Bezug
                
Bezug
IR aus IC gewinnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:33 Mi 31.12.2014
Autor: UniversellesObjekt

Hi,

Danke schonmal soweit.

> Haette man sich [mm]\IC[/mm] irgendwoher beschafft, so koennte man
> so konstruieren: In der Theorie formal reeller Koerper gibt
> es folgenden Satz von Artin: Sei [mm]C[/mm] ein algebraisch
> abgeschlossener Koerper und [mm]K\leq C[/mm] echter Teilkoerper.

$ K $ sollen doch am Ende unsere reellen Zahlen werden oder? Woher weiß ich denn, dass es diesen Unterkörper gibt?

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
IR aus IC gewinnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mi 31.12.2014
Autor: felixf

Moin,

> > Haette man sich [mm]\IC[/mm] irgendwoher beschafft, so koennte man
> > so konstruieren: In der Theorie formal reeller Koerper gibt
> > es folgenden Satz von Artin: Sei [mm]C[/mm] ein algebraisch
> > abgeschlossener Koerper und [mm]K\leq C[/mm] echter Teilkoerper.
>  
> [mm]K[/mm] sollen doch am Ende unsere reellen Zahlen werden oder?

genau, sie sind es (bis auf Isomorphie) sogar.

> Woher weiß ich denn, dass es diesen Unterkörper gibt?

Gute Frage :-)

Wenn du zeigen könntest, dass es einen Automorphismus $C [mm] \to [/mm] C$ gibt von endlicher Ordnung (der nicht gerade Ordnung 1 hat), so kannst du dessen Fixkoerper anschauen $K$: $[C : K]$ ist gleich der Ordnung des Automorphismus. Wenn du jetzt den Satz von Artin anwendest, bekommst du dass die Ordnung 2 ist und $K$ isomorph zu [mm] $\IR$. [/mm]

Wie man allerdings zeigen kann, dass so ein Automorphismus existiert: gute Frage...

Ich wuerd mal schauen, in welchem Kontext Artin den Satz bewiesen hat. Da wird sich sicher mehr zu dem Thema finden, vielleicht auch eine direkte Antwort auf deine Frage...

LG Felix


Bezug
                                
Bezug
IR aus IC gewinnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Mi 31.12.2014
Autor: hippias

Haha, nein, ich kann auch nicht ohne weiteres die Existenz eines solchen Teilkoerpers nachweisen (oder eines endlchen Automorphismus). Ich wollte nur einen Denkanstoss geben. Eventuell wuerde sich aus der vorausgesetzten Konstruktion von [mm] $\IC$ [/mm] etwas ergeben.

Bezug
                        
Bezug
IR aus IC gewinnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 02.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
IR aus IC gewinnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Do 01.01.2015
Autor: UniversellesObjekt

Frohes neues Jahr!

Auf die Frage bin ich wegen []dieser Diskussion auf stackexchange gekommen. Soll ich dort nochmal die Frage stellen?

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de