www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - \IZ [\wurzel{n}]
\IZ [\wurzel{n}] < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

\IZ [\wurzel{n}]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 So 11.10.2009
Autor: kleine_ente_nora

Die Aussage ist folgende: Betrachtet man den Integritätsbereich [mm] \IZ [\wurzel{n}] [/mm] = { [mm] a+b\wurzel{n} [/mm] | a,b [mm] \in \IZ [/mm] } für n [mm] \in \IZ, [/mm] n [mm] \not= [/mm] 0, n [mm] \not= [/mm] 1, n quadratfrei, dann lässt sich jedes Element aus [mm] \IZ [\wurzel{n}] [/mm] eindeutig in der Form [mm] a+b\wurzel{n} [/mm] mit a,b [mm] \in \IZ [/mm] darstellen.
Hierbei meint quadratfrei: Es existiert keine Primzahl p mit p² | n.
Ich weiß, dass es was mit dem Eisensteinkriterium bei einer Körpererweiterung vom Grad 2 zu tun hat, dass man die Elemente aus [mm] \IZ [\wurzel{n}] [/mm] so schreiben kann, aber kann mir das jemand nochmal genau erklären? Warum lassen sich alle Elemente so schreiben?

        
Bezug
\IZ [\wurzel{n}]: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 11.10.2009
Autor: felixf

Hallo!

> Die Aussage ist folgende: Betrachtet man den
> Integritätsbereich [mm]\IZ [\wurzel{n}][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm]a+b\wurzel{n}[/mm] |

> a,b [mm]\in \IZ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} für n [mm]\in \IZ,[/mm] n [mm]\not=[/mm] 0, n [mm]\not=[/mm] 1, n

> quadratfrei, dann lässt sich jedes Element aus [mm]\IZ [\wurzel{n}][/mm]
> eindeutig in der Form [mm]a+b\wurzel{n}[/mm] mit a,b [mm]\in \IZ[/mm]
> darstellen.
>  Hierbei meint quadratfrei: Es existiert keine Primzahl p
> mit p² | n.
>
>  Ich weiß, dass es was mit dem Eisensteinkriterium bei
> einer Körpererweiterung vom Grad 2 zu tun hat, dass man
> die Elemente aus [mm]\IZ [\wurzel{n}][/mm] so schreiben kann, aber
> kann mir das jemand nochmal genau erklären? Warum lassen
> sich alle Elemente so schreiben?

Nun, das man jedes Element so schreiben kann folgt aus der Definition und aus [mm] $\sqrt{n}^2 [/mm] = n [mm] \in \IZ$. [/mm] Das die Darstellung eindeutig ist, dazu brauchst du tatsaechlich Eisenstein. Demnach ist naemlich das Polynom [mm] $X^2 [/mm] - n [mm] \in \IQ[x]$ [/mm] irreduzibel. Insbesondere sind also [mm] $\sqrt{n}$ [/mm] und 1 linear unabhaengig ueber [mm] $\IQ$: [/mm] andernfalls liesse sich eine Relation $a [mm] \sqrt{n} [/mm] + b = 0$ finden mit $a, b [mm] \in \IQ$ [/mm] nicht beide 0, und dann waer $a X + b [mm] \in \IQ[x]$ [/mm] ein Polynom vom Grad $< 2$ mit [mm] $\sqrt{n}$ [/mm] als Nullstelle.

Da [mm] $\sqrt{n}$ [/mm] und $1$ linear unabhaengig ueber [mm] $\IQ$ [/mm] sind, ist die Darstellung $a + b [mm] \sqrt{n}$ [/mm] mit $a, b [mm] \in \IQ$ [/mm] eindeutig, und also auch fuer $a, b [mm] \in \IZ$. [/mm]

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de