www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Ideale
Ideale < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 So 06.11.2016
Autor: Herzblatt

Aufgabe
Sei I Ideal vom Ring R
a) Durch Induktion definiere [mm] I^1=I [/mm] und [mm] I^{n+1}=II^n. [/mm] Zeige, dass für alle n [mm] \in \N I^n [/mm] ein Ideal von R ist und [mm] I^n [/mm] Teilmenge von I.
b) Zeige dass [mm] rad(I)=\{a\in R | exis. n \in \N mit a^n \in I \} [/mm] ein Ideal von R ist.

Um zu zeigen, dass es sich um ein Ideal handelt muss ich ja praktisch zeigen, dass
1) 0 [mm] \in I^n [/mm] bzw [mm] \in [/mm] rad(I)
2) für a,b [mm] \in I^n [/mm] dann auch a-b [mm] \in I^n [/mm] bzw. [mm] \in [/mm] rad(I)
3) für r [mm] \in \R [/mm] und a  [mm] \in I^n [/mm] bzw. [mm] \in [/mm] rad(I) ist auch ra  [mm] \in I^n [/mm] bzw. [mm] \in [/mm] rad(I)

zu a) Kann ich das mit Induktion zeigen? für n=0 hätte ich ja gleich I raus, was nach Voraussetzung ein Ideal ist. Jetzt müsste ich ja eigentlich das ganze für n+1 beweisen....da komme ich aber nicht weiter....setzt man dann [mm] II^{n+1} [/mm] und muss zeigen, dass das I ^{n+2} ist? Und das das Teilmenge ist, dann nehme ich ja ein Element raus und zeige, dass es auch in [mm] \II [/mm] enthalten ist, oder?

zu b) Dass die Null da drinne liegt ist klar, denn sie liegt ja auch in R oder?
aber wie gehe ich weiter vor?

Lieben Dank


        
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 So 06.11.2016
Autor: hippias


> Sei I Ideal vom Ring R
>  a) Durch Induktion definiere [mm]I^1=I[/mm] und [mm]I^{n+1}=II^n.[/mm]
> Zeige, dass für alle n [mm]\in \N I^n[/mm] ein Ideal von R ist und
> [mm]I^n[/mm] Teilmenge von I.
>  b) Zeige dass [mm]rad(I)=\{a\in R | exis. n \in \N mit a^n \in I \}[/mm]
> ein Ideal von R ist.
>  Um zu zeigen, dass es sich um ein Ideal handelt muss ich
> ja praktisch

Praktisch?

> zeigen, dass
>   1) 0 [mm]\in I^n[/mm] bzw [mm]\in[/mm] rad(I)
>  2) für a,b [mm]\in I^n[/mm] dann auch a-b [mm]\in I^n[/mm] bzw. [mm]\in[/mm] rad(I)
>  3) für r [mm]\in \R[/mm] und a  [mm]\in I^n[/mm] bzw. [mm]\in[/mm] rad(I) ist auch
> ra  [mm]\in I^n[/mm] bzw. [mm]\in[/mm] rad(I)
>  
> zu a) Kann ich das mit Induktion zeigen?

Ja.

> für n=0 hätte
> ich ja gleich I raus,

Nein...

> was nach Voraussetzung ein Ideal ist.

... vermutlich aber trotzdem richtig.

> Jetzt müsste ich ja eigentlich das ganze für n+1
> beweisen....da komme ich aber nicht weiter....setzt man
> dann [mm]II^{n+1}[/mm] und muss zeigen, dass das I ^{n+2} ist?

Meine Güte, das ist doch nicht zu verstehen! Schreibe bitte einmal kurz und klar auf, worin hier der Induktions besteht.

> Und
> das das Teilmenge ist, dann nehme ich ja ein Element raus
> und zeige, dass es auch in [mm]\II[/mm] enthalten ist, oder?

s.o.

>  
> zu b) Dass die Null da drinne liegt ist klar, denn sie
> liegt ja auch in R oder?
>  aber wie gehe ich weiter vor?

Du musst die selben Axiome wie im Teil a) nachrechnen. Fange am besten mit Axiom 1) und 3) an.

>  
> Lieben Dank
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de