www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ideale vertauschen
Ideale vertauschen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale vertauschen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Do 11.04.2013
Autor: Schadowmaster

moin,

für eine Hausaufgabe würde ich gerne eine schöne, kleine Aussage verwenden, die ich aber leider nicht sauber bewiesen kriege.
Dafür ist $R$ ein kommutativer Ring mit 1, $I,J$ sind zwei Ideale in $R$.
Dann ist $[J] := [mm] \{j+I \mid j \in J \}$ [/mm] ein Ideal in $R/I$ (sollte stimmen, oder?).
Identifizieren wir $J$ mit $[J]$, so ist $(R/I)/J$ ein wohldefinierter Ring.
Nun wäre es sehr praktisch, wenn $(R/I)/J [mm] \cong [/mm] R/(I+J)$ gelten würde (Isomorphie als Ringe).
Dafür habe ich mir als Abbildung $f : (R/I)/J [mm] \to [/mm] R/(I+J), (x + I)+J [mm] \mapsto [/mm] x + (I+J)$ geschnappt und hoffe, dass das wirklich ein Ringisomorhpismus ist; leider kann ich nur die Bijektivität halbwegs begründen, insbesondere die Wohldefiniertheit macht mir bei so vielen Restklassen Sorgen...
Stimmt die Aussage überhaupt? Und wenn ja, gibt es einen schönen Weg (Homomorphiesatz, etc.) sie zu beweisen?

Benutzen möchte ich sie für folgende Aufgabe:
Aufgabe
Zeige, dass das Ideal [mm] $\langle [/mm] 3 [mm] \rangle$ [/mm] in [mm] $\IZ[\sqrt{2}] [/mm] = [mm] \IZ[x]/\langle x^2-2 \rangle$ [/mm] maximal ist.



Wenn die Aussage von oben gilt, dann kann man einen Schritt weiter gehen (da $I+J = J+I$) und erhält $(R/I)/J [mm] \cong [/mm] (R/J)/I$.
Auf die Aufgabe angewand ist also [mm] $\IZ[\sqrt{2}]/\langle3\rangle \cong \IZ_3[x]/\langle x^2-2\rangle \cong \IF_9$ [/mm] ein Körper, also [mm] $\langle 3\rangle$ [/mm] ein maximales Ideal in [mm] $\IZ[\sqrt{2}]$. [/mm]

Wenn die Vertauschbarkeit der Ideale also stimmen würde, wäre das sehr praktisch; und wenn es dafür einen schönen Beweis gibt, den ich nur gerade nicht sehe, wäre das natürlich um so besser.

Danke schonmal für Hilfe.


lg

Schadow

        
Bezug
Ideale vertauschen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 11.04.2013
Autor: hippias


> moin,
>  
> für eine Hausaufgabe würde ich gerne eine schöne, kleine
> Aussage verwenden, die ich aber leider nicht sauber
> bewiesen kriege.
>  Dafür ist [mm]R[/mm] ein kommutativer Ring mit 1, [mm]I,J[/mm] sind zwei
> Ideale in [mm]R[/mm].
>  Dann ist [mm][J] := \{j+I \mid j \in J \}[/mm] ein Ideal in [mm]R/I[/mm]
> (sollte stimmen, oder?).
>  Identifizieren wir [mm]J[/mm] mit [mm][J][/mm],

Das wuerde ich besser nicht machen; schreibe vielleicht besser $[J]= J+I/I$.

> so ist [mm](R/I)/J[/mm] ein
> wohldefinierter Ring.
>  Nun wäre es sehr praktisch, wenn [mm](R/I)/J \cong R/(I+J)[/mm]
> gelten würde (Isomorphie als Ringe).

Das gilt auch, das ist einer der Homomorphiesaetze: Hat man Ideale [mm] $L\leq [/mm] M$ von $R$, so gilt die Isomorphie [mm] $R/M\cong [/mm] (R/L)/(M/L)$.

>  Dafür habe ich mir als Abbildung [mm]f : (R/I)/J \to R/(I+J), (x + I)+J \mapsto x + (I+J)[/mm]
> geschnappt und hoffe, dass das wirklich ein
> Ringisomorhpismus ist; leider kann ich nur die
> Bijektivität halbwegs begründen, insbesondere die
> Wohldefiniertheit macht mir bei so vielen Restklassen
> Sorgen...
>  Stimmt die Aussage überhaupt? Und wenn ja, gibt es einen
> schönen Weg (Homomorphiesatz, etc.) sie zu beweisen?
>  
> Benutzen möchte ich sie für folgende Aufgabe:
>  Zeige, dass das Ideal [mm]\langle 3 \rangle[/mm] in [mm]\IZ[\sqrt{2}] = \IZ[x]/\langle x^2-2 \rangle[/mm]
> maximal ist.
>  
>
> Wenn die Aussage von oben gilt, dann kann man einen Schritt
> weiter gehen (da [mm]I+J = J+I[/mm]) und erhält [mm](R/I)/J \cong (R/J)/I[/mm].
>  
> Auf die Aufgabe angewand ist also
> [mm]\IZ[\sqrt{2}]/\langle3\rangle \cong \IZ_3[x]/\langle x^2-2\rangle \cong \IF_9[/mm]
> ein Körper, also [mm]\langle 3\rangle[/mm] ein maximales Ideal in
> [mm]\IZ[\sqrt{2}][/mm].
>  
> Wenn die Vertauschbarkeit der Ideale also stimmen würde,
> wäre das sehr praktisch; und wenn es dafür einen schönen
> Beweis gibt, den ich nur gerade nicht sehe, wäre das
> natürlich um so besser.
>  
> Danke schonmal für Hilfe.
>  
>
> lg
>  
> Schadow


Bezug
                
Bezug
Ideale vertauschen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Do 11.04.2013
Autor: tobit09

Hallo zusammen,


>  >  Nun wäre es sehr praktisch, wenn [mm](R/I)/J \cong R/(I+J)[/mm]
> > gelten würde (Isomorphie als Ringe).
>  Das gilt auch, das ist einer der Homomorphiesaetze: Hat
> man Ideale [mm]L\leq M[/mm] von [mm]R[/mm], so gilt die Isomorphie [mm]R/M\cong (R/L)/(M/L)[/mm].

Ja, die gewünschte Aussage ergibt sich durch diesen Isomorphiesatz angewandt auf $L:=I$ und $M:=I+J$. Dabei ist noch zu überlegen, dass tatsächlich $M/L=(I+J)/I$ (was eine abkürzende Schreibweise für [mm] $\{x+I\;|\;x\in I+J\}$ [/mm] ist) tatsächlich mit [mm] $[J]=\{j+I\;|\;j\in J\}$ [/mm] übereinstimmt.


Viele Grüße
Tobias

Bezug
        
Bezug
Ideale vertauschen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Do 11.04.2013
Autor: tobit09

Falls du ohne Isomorphiesatz arbeiten möchtest, wendest du am besten zweimal den Homomorphiesatz an (was im Grunde genommen nur den Beweis des Isomorphiesatzes nachahmt):

Die kanonische Projektion [mm] $\pi\colon R\to [/mm] R/(I+J)$ ist surjektiv und erfüllt [mm] $\operatorname{ker}\pi=I+J\supseteq [/mm] I$.

Also induziert sie einen wohldefinierten surjektiven Homomorphismus [mm] $g\colon R/I\to R/(I+J),\quad x+I\mapsto [/mm] x+(I+J)$.

Man kann sich überlegen, dass [mm] $\operatorname{ker}g=[J]$ [/mm] gilt.

Somit induziert $g$ einen wohldefinierten Isomorphismus [mm] $f\colon (R/I)/[J]\to [/mm] R/(I+J)$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de