www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Ideale von M(nxn,K) K Körper
Ideale von M(nxn,K) K Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale von M(nxn,K) K Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 So 05.11.2006
Autor: Sanshine

Aufgabe
Sei K ein Körper, [mm] n\in \IN. [/mm] Sei [mm] R=M(n\times [/mm] n, K) der Ring aller [mm] n\times [/mm] n Matrizen über K.
Beh.: R besitzt genau zwei Ideale

Moin!
Es wäre nett, wenn mir jemand mit dieser Aufgabe helfen würde, sogar nur vereinfacht für den Fall der [mm] 2\times2 [/mm] Matrizen. Ich gehe mal davon aus, dass die zwei betreffenden Ideale I=R selbst und I={0} sind.
Habe ein wenig in [mm] M(2\times2, [/mm] K) rumgerechnet, bin aber zu keinem Ergebnis gekommen. Habe versucht, mit determinanten und der Tatsache, dass die Kommutativität hier fehlt, rumzutriksen [mm] (A\in [/mm] I folgt immerhin [mm] AB,BA\in [/mm] I f.a. [mm] B\in [/mm] R.), um irgendwann zu einer Fallentscheidung zu kommen, dass A=0 oder A=1 wird, aber das hat irgendwie nie ganz geklappt.
Falscher Weg?
Wie gesagt, wäre für jede Hilfe dankbar,
San

        
Bezug
Ideale von M(nxn,K) K Körper: Strategie
Status: (Antwort) fertig Status 
Datum: 13:04 So 05.11.2006
Autor: statler

Guten Tag Susann!

> Sei K ein Körper, [mm]n\in \IN.[/mm] Sei [mm]R=M(n\times[/mm] n, K) der Ring
> aller [mm]n\times[/mm] n Matrizen über K.
> Beh.: R besitzt genau zwei Ideale
>  Moin!
>  Es wäre nett, wenn mir jemand mit dieser Aufgabe helfen
> würde, sogar nur vereinfacht für den Fall der [mm]2\times2[/mm]
> Matrizen. Ich gehe mal davon aus, dass die zwei
> betreffenden Ideale I=R selbst und I={0} sind.

Die Lösungsstrategie kann wie folgt aussehen:
Wenn I [mm] \not= [/mm] {0} ist, gibt es eine Matrix in I, die [mm] \not= [/mm] 0 ist, die also mindestens einen Eintrag [mm] \not= [/mm] 0 hat. Durch Multiplikation mit geeigneten einfachen Matrizen von rechts und links kann ich erreichen, daß die Matrix außer diesem Eintrag nur 0en enthält. Dann kann ich wieder durch Multiplikation mit geeigneten Matrizen von links (damit verschiebe ich Zeilen) und rechts (für die Spalten) dieses eine Element an jede andere Stelle transportieren. Außerdem kann ich es mit Faktoren multiplizieren durch Multiplikation mit einer Diagonalmatrix. Und dann kann ich auch noch Matrizen addieren, ohne das Ideal zu verlassen. In Summe heißt das aber, ich kann durch diese Aktionen aus meiner Ursprungsmatrix [mm] \not= [/mm] 0 jede Matrix des vollen Ringes herstellen, also ist das Ideal dann der ganze Matrizenring.

Du mußt jetzt nur noch diese geeigneten Matrizen bestimmen :-)
Einen schönen Sonntag dabei, das norddeutsche Wetter ist ja ideal dafür
Dieter


Bezug
                
Bezug
Ideale von M(nxn,K) K Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 So 05.11.2006
Autor: Sanshine

Vielen, vielen Dank! Jetzt wirds schön:
Sei [mm] \pmat{ a & b \\ c & d }=X\in I\not= [/mm] {0}. Sei oBdA [mm] a\not=0. [/mm] Seien [mm] A,B,C,D\in [/mm] R mit [mm] A=\pmat{ 1 & 0 \\ 0 & 0 }, B=\pmat{ a^{-1} & 0 \\ 0 & 0 }, C=\pmat{ 0 & 0 \\ 0 & 1 }. [/mm]
Dann gilt: [mm] AXB=\pmat{ 1 & 0 \\ 0 & 0 } [/mm] und [mm] (X-AX)C=\pmat{ 0 & 0 \\ 0 & 1 } [/mm] beide in I, also auch die Summe, also die Eins, also I=R.
Fertig, werde jetzt das,hmmm, lauschige Norddeutsche Sonntagswetter genießen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de