www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Identisch konstant
Identisch konstant < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identisch konstant: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 14.02.2011
Autor: Mat_

Aufgabe
$ f: [mm] \IR^2 \to \IR [/mm]  stetig partiell differentierbar so dass

[mm] $\bruch {\partial f}{\partial x} [/mm] (x,y) = [mm] \bruch {\partial f}{\partial y} [/mm] (x,y) = 0 für alle (x,y) [mm] \in \IR^2 [/mm]

Zeigen Sie, dass f identisch konstant ist.

Nun leider bin ich bei dieser Aufgabe überfragt. Wie zeige ich das?

Gruss, Mat_

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Identisch konstant: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mo 14.02.2011
Autor: MaTEEler

Hallo,

> $ f: [mm]\IR^2 \to \IR[/mm]  stetig partiell differentierbar so
> dass
>  
> [mm]$\bruch {\partial f}{\partial x}[/mm] (x,y) = [mm]\bruch {\partial f}{\partial y}[/mm]
> (x,y) = 0 für alle (x,y) [mm]\in \IR^2[/mm]
>  
> Zeigen Sie, dass f identisch konstant ist.
>  Nun leider bin ich bei dieser Aufgabe überfragt. Wie
> zeige ich das?
>  
> Gruss, Mat_
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Meiner Meinung nach ist das nix großes:

[mm]$\bruch {\partial f}{\partial x}=0[/mm] bedeutet, dass die Funktion in dem Bereich, in dem das gilt (hier: ganz [mm] \IR^{2}), [/mm] nicht von x abhängt.
Analog:
[mm]$\bruch {\partial f}{\partial y}=0[/mm] bedeutet dasselbe, nur eben mit y, also keine y-Abhängigkeit.

Eine Funktion f: [mm]\IR^2 \to \IR[/mm], die weder von x noch von y abhängt, ist konstant!

Mit dem Begriff "identisch konstant" verbinde ich keine weitere Besonderheit, ich beziehe das "identisch" eigentlich nur auf die Tatsache, dass die beiden partiellen Ableitungen identisch sind, nämlich beide Null.

Somit ist meiner Meinung nach f identisch konstant!

[mm] \Box [/mm]


Bezug
                
Bezug
Identisch konstant: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Mo 14.02.2011
Autor: Mat_

hallo

gut diese Überlegungen habe ich gemacht, nur ich war überhautpt nicht sicher, was hier genau verlangt wird. Na gut dann hat sich das ja erledigt. Danke!

Lg Mat_

Bezug
        
Bezug
Identisch konstant: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Di 15.02.2011
Autor: fred97

Machen wir es lieber präzise:

Nimm $a,b [mm] \in \IR^2$. [/mm] Nach dem Mittelwertsatz gibt es einen Punkt [mm] (\xi, \eta) [/mm] auf der Vebindungsstrecke von a und b mit:

               $f(b)-f(a)= [mm] f'(\xi,\eta)*(b-a)$ [/mm]

nach Vor. ist $ [mm] f'(\xi,\eta)=(0,0)$, [/mm] somit ist f(a)=f(b)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de