www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Identität beweisen
Identität beweisen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 So 07.12.2014
Autor: Die_Suedkurve

Aufgabe
Seien f: [mm] \IN [/mm] x [mm] \IN \to \IC, [/mm] g: [mm] \IZ \to \IC [/mm] Abbildungen.

Dann gilt:

[mm] \summe_{r,s=1}^{n}f(r,s) [/mm] = [mm] \summe_{h=0}^{n-1}\summe_{t=1}^{n-|h|}f(t [/mm] + |h|,t) + [mm] \summe_{h=-(n-1)}^{-1}\summe_{t=1}^{n-|h|}f(t,t [/mm] + |h|)

Hallo,

ich habe versucht das per Induktion zu beweisen, aber das funktioniert irgendwie nicht.
Gibt es auch eine andere, einfachere Möglichkeit?

        
Bezug
Identität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 So 07.12.2014
Autor: Marcel

Hallo,

> Seien f: [mm]\IN[/mm] x [mm]\IN \to \IC,[/mm] g: [mm]\IZ \to \IC[/mm] Abbildungen.

g brauchen wir doch nirgends?

> Dann gilt:
>  
> [mm]\summe_{r,s=1}^{n}f(r,s)[/mm] =
> [mm]\summe_{h=0}^{n-1}\summe_{t=1}^{n-|h|}f(t[/mm] + |h|,t) +
> [mm]\summe_{h=-(n-1)}^{-1}\summe_{t=1}^{n-|h|}f(t,t[/mm] + |h|)
>  Hallo,
>  
> ich habe versucht das per Induktion zu beweisen, aber das
> funktioniert irgendwie nicht.
>  Gibt es auch eine andere, einfachere Möglichkeit?

Ich würde mir einfach folgendes angucken:

    [mm] $qG:=\{(r,s) \in \IN^2 \mid r,s \in \IN\}$ [/mm]

ist das Gitter eines Quadrates (Du kannst auch sagen: ein quadratisches
Gitter - deswegen [mm] $qG\,$). [/mm]

Die Frage ist, ob gilt:

    [mm] $qG=\stackrel{d}{\bigcup_{h=0}^{n-1}}\{(t+|h|,\,t)\mid t=1,...,n-|h|\}$ $\stackrel{d}{\cup}$ $\stackrel{d}{\bigcup_{h=-(n-1)}^{-1}}\{(t,\,t+|h|)\mid t=1,...,n-|h|\}\,,$ [/mm]

wobei die Mengen rechterhand alle disjunkt sein müssen. (Daher dieses
hochgestellte d beim Vereinigungszeichen im Sinne von *disjunkt vereinigt*)
- die Disjunktheit, damit wir nicht Funktionswerte mehrmals addieren, und
die Gleichheit der Vereinigung, damit wir auch alle Stellen durchlaufen, die
in [mm] $qG\,$ [/mm] drinstehen.
Anders gesagt: "qG = Disjunkte Vereinigung rechterhand", damit jede Stelle
des Gitters [mm] $qG\,$ [/mm] genau einmal durchlaufen wird!

Schauen wir uns das mal für [mm] $n=3\,$ [/mm] an, dann ist

    [mm] $qG=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}\,.$ [/mm]

Weiter ist

    [mm] $\bigcup_{h=0}^{n-1}\{(t+|h|,\,t)\mid t=1,...,n-|h|\}=\bigcup_{h=0}^{2}\{(t+h,\,t)\mid t=1,...,3-|h|\}=\{(1,1),(2,2),(3,3)\} \cup \{(2,1),(3,2)\} \cup \{(3,1)\}$ [/mm]

und

    [mm] $\bigcup_{h=-(n-1)}^{-1}\{(t,\,t+|h|)\mid t=1,...,n-|h|\}=\bigcup_{h=-2}^{-1}\{(t,\,t+|h|)\mid t=1,...,n-|h|\}=\{(1,3)\} \cup \{(1,2),(2,3)\}\,.$ [/mm]

Probier' das mal analog für [mm] $n=4\,$ [/mm] und schau, ob Du ein Schema erkennst.
Im Endeffekt kann man sagen: Es reicht, zu zeigen, dass durch

    [mm] $\bigcup_{h=0}^{n-1}\{(t+|h|,\,t)\mid t=1,...,n-|h|\}$ $\cup$ $\bigcup_{h=-(n-1)}^{-1}\{(t,\,t+|h|)\mid t=1,...,n-|h|\}$ [/mm]

ein Schema gegeben ist, das das Gitters $qG=qG(n)$ (welches die Größe [mm] $n^2$ [/mm]
hat) so durchläuft, dass jeder Punkt des Gitters genau einmal getroffen wird.

Oben hast Du schon gesehen bzw. das oben gesehene läßt sich verallgemeinern:
Bei

    [mm] $\bigcup_{h=0}^{n-1}\{(t+|h|,\,t)\mid t=1,...,n-|h|\}$ [/mm]

entsteht für [mm] $h=0\,$ [/mm] genau die Diagonale des quadratischen Gitters [mm] $qG\,$: [/mm]

    [mm] $\{(t+|0|,\,t)\mid t=1,...,n-|0|\}=\{(m,m) \mid m \in \{1,...,n\}\}\,.$ [/mm]        

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de