www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Identitäten beweisen
Identitäten beweisen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identitäten beweisen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 20:14 So 30.11.2008
Autor: Studentin87

Aufgabe
Beweisen oder widerlegen Sie folgende Identitäten:
a) für A [mm] \in [/mm] M(m [mm] \times [/mm] n,K), B,C [mm] \in [/mm] M(n [mm] \times [/mm] p,K):A(B+C)=AB+AC
b) für A [mm] \in [/mm] M(m [mm] \times [/mm] n,K), B [mm] \in [/mm] M(n [mm] \times [/mm] p,K), [mm] \lambda \in K:\lambda [/mm] (AB)=( [mm] \lambda [/mm] A)B=A( [mm] \lambda [/mm] B)
c) für A [mm] \in [/mm] M(m [mm] \times [/mm] n,K), B,C [mm] \in [/mm] M(n [mm] \times [/mm] p,K):( AB=AC [mm] \Rightarrow [/mm] B=C [mm] \vee [/mm] A=0)
d) für A,B [mm] \in [/mm] M(m [mm] \times [/mm] n,K), [mm] \lambda \in [/mm] K: ( [mm] \lambda [/mm] A= [mm] \lambda [/mm] B  [mm] \Rightarrow \lambda=0 \vee [/mm] A=B)

Ich habe die Aufgabe bereits gelöst,doch bin ich etwas verwirrt,denn bei mir sind alle vier Identitäten wahr. Kann das sein? Denn in der Aufgabenstellung steht "oder widerlegen Sie". Kann mir jemand sagen, ob mein Ergebnis richtig ist? Also ob alle Identitäten richtig sind?

        
Bezug
Identitäten beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 01.12.2008
Autor: felixf

Hallo

> Beweisen oder widerlegen Sie folgende Identitäten:
>  a) für A [mm]\in[/mm] M(m [mm]\times[/mm] n,K), B,C [mm]\in[/mm] M(n [mm]\times[/mm]
> p,K):A(B+C)=AB+AC
>  b) für A [mm]\in[/mm] M(m [mm]\times[/mm] n,K), B [mm]\in[/mm] M(n [mm]\times[/mm] p,K),
> [mm]\lambda \in K:\lambda[/mm] (AB)=( [mm]\lambda[/mm] A)B=A( [mm]\lambda[/mm] B)
>  c) für A [mm]\in[/mm] M(m [mm]\times[/mm] n,K), B,C [mm]\in[/mm] M(n [mm]\times[/mm] p,K):(
> AB=AC [mm]\Rightarrow[/mm] B=C [mm]\vee[/mm] A=0)
>  d) für A,B [mm]\in[/mm] M(m [mm]\times[/mm] n,K), [mm]\lambda \in[/mm] K: ( [mm]\lambda[/mm]
> A= [mm]\lambda[/mm] B  [mm]\Rightarrow \lambda=0 \vee[/mm] A=B)

>

>  Ich habe die Aufgabe bereits gelöst,doch bin ich etwas
> verwirrt,denn bei mir sind alle vier Identitäten wahr. Kann
> das sein? Denn in der Aufgabenstellung steht "oder
> widerlegen Sie". Kann mir jemand sagen, ob mein Ergebnis
> richtig ist? Also ob alle Identitäten richtig sind?

Mindestens eine der Identitaeten ist falsch.

Wie hast du denn z.B. c) und d) geloest?

LG Felix


Bezug
                
Bezug
Identitäten beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 01.12.2008
Autor: Studentin87

Also...ich weiß,dass a) und b) auf jeden Fall richtig sind,denn das wurde bereits in der Vorlesung gesagt und ich konnte es auch beweisen. c) und d) habe ich wie folgt bewiesen:

c) AB=AC
[mm] \gdw \summe_{i=1}^{n} a_{ij}b_{jk}=\summe_{i=1}^{n} a_{ij}c_{jk} [/mm]
[mm] \gdw \summe_{i=1}^{n} a_{ij}b_{jk} [/mm] - [mm] \summe_{i=1}^{n} a_{ij}c_{jk}=0 [/mm]
[mm] \gdw \summe_{i=1}^{n} a_{ij}b_{jk} [/mm] - [mm] a_{ij}c_{jk}=0 [/mm]
[mm] \gdw \summe_{i=1}^{n} a_{ij}(b_{jk} [/mm] - [mm] c_{jk})=0 [/mm]
[mm] \Rightarrow a_{ij}=0 \vee b_{jk} [/mm] - [mm] c_{jk}=0 [/mm]
[mm] \Rightarrow a_{ij}=0 \vee b_{jk}=c_{jk} [/mm]
[mm] \Rightarrow [/mm] A=0 [mm] \vee [/mm] B=C

d) [mm] \lambda [/mm] A= [mm] \lambda [/mm] B
[mm] \gdw \lambda a_{ij}= \lambda b_{ij} [/mm]
[mm] \gdw \lambda a_{ij} [/mm] - [mm] \lambda b_{ij}=0 [/mm]
[mm] \gdw \lambda (a_{ij} [/mm] - [mm] b_{ij})=0 [/mm]
[mm] \Rightarrow \lambda=0 \vee a_{ij} [/mm] - [mm] b_{ij}=0 [/mm]
[mm] \Rightarrow \lambda=0 \vee a_{ij}=b_{ij} [/mm]
[mm] \Rightarrow \lambda=0 \vee [/mm] A=B

Was habe ich falsch gemacht??

Bezug
                        
Bezug
Identitäten beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Mo 01.12.2008
Autor: Marc

Hallo Studentin87,

> Also...ich weiß,dass a) und b) auf jeden Fall richtig
> sind,denn das wurde bereits in der Vorlesung gesagt und ich
> konnte es auch beweisen. c) und d) habe ich wie folgt
> bewiesen:
>  
> c) AB=AC
>  [mm]\gdw \summe_{i=1}^{n} a_{ij}b_{jk}=\summe_{i=1}^{n} a_{ij}c_{jk}[/mm]

Das ist mMn nicht richtig, die Matrizenmultiplikation folgt der Regel "Zeile mal Spalte", also müsste es lauten

[mm]\gdw \summe^n_{\red{j}=1} a_{ij}b_{jk}=\summe^n_{\red{j}=1} a_{ij}c_{jk}[/mm]

(war wahrscheinlich nur ein Tippfehler)

Du musst dir hier im Klaren sein, dass [mm] $\summe_{j=1}^{n} a_{ij}b_{jk}$ [/mm] nur ein einziger Eintrag der Matrix AB ist, nämlich der in der i-ten Zeile und k-ten Spalte.

> [mm]\gdw \summe_{i=1}^{n} a_{ij}b_{jk}[/mm] - [mm]\summe_{i=1}^{n} a_{ij}c_{jk}=0[/mm]
>  
> [mm]\gdw \summe_{i=1}^{n} a_{ij}b_{jk}[/mm] - [mm]a_{ij}c_{jk}=0[/mm]
>  [mm]\gdw \summe_{i=1}^{n} a_{ij}(b_{jk}[/mm] - [mm]c_{jk})=0[/mm]

Mit der obigen Verbesserung müsste es hier lauten:

[mm]\gdw \summe_{j=1}^{n} a_{ij}(b_{jk} - c_{jk})=0[/mm]

>  [mm]\Rightarrow a_{ij}=0 \vee b_{jk}[/mm] - [mm]c_{jk}=0[/mm]

Diese Folgerung ist nun ganz falsch :-)
Da hat du wohl das Summenzeichen übersehen, eine Summe ist doch nicht genau dann Null, wenn alle Summanden Null sind.

>  [mm]\Rightarrow a_{ij}=0 \vee b_{jk}=c_{jk}[/mm]
>  [mm]\Rightarrow[/mm] A=0
> [mm]\vee[/mm] B=C
>  
> d) [mm]\lambda[/mm] A= [mm]\lambda[/mm] B
>  [mm]\gdw \lambda a_{ij}= \lambda b_{ij}[/mm]

für alle $i,j$, also jeden Eintrag!

>  [mm]\gdw \lambda a_{ij}[/mm] -
> [mm]\lambda b_{ij}=0[/mm]
>  [mm]\gdw \lambda (a_{ij}[/mm] - [mm]b_{ij})=0[/mm]
>  [mm]\Rightarrow \lambda=0 \vee a_{ij}[/mm] - [mm]b_{ij}=0[/mm]
>  [mm]\Rightarrow \lambda=0 \vee a_{ij}=b_{ij}[/mm]
>  [mm]\Rightarrow \lambda=0 \vee[/mm]
> A=B

Das sieht gut aus.

> Was habe ich falsch gemacht??

Siehe oben :-)

Viele Grüße,
Marc

Bezug
                                
Bezug
Identitäten beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mo 01.12.2008
Autor: Studentin87

Ok stimmt du hast recht!
Aber wie kann ich c) widerlegen?? Wie muss ich denn da weiter vorgehen?? Oder würde es reichen ein Gegenbeispiel anzugeben??

Bezug
                                        
Bezug
Identitäten beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mo 01.12.2008
Autor: Marc

Hallo Studentin87,

> Ok stimmt du hast recht!
>  Aber wie kann ich c) widerlegen?? Wie muss ich denn da
> weiter vorgehen?? Oder würde es reichen ein Gegenbeispiel
> anzugeben??

Klar, ein Gegenbeispiel widerlegt jede Behauptung.

Viele Grüße,
Marc


Bezug
                
Bezug
Identitäten beweisen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 19:52 Mo 01.12.2008
Autor: Dinker

derder

Bezug
                        
Bezug
Identitäten beweisen: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:04 Mo 01.12.2008
Autor: Marc

diedas

Bezug
                                
Bezug
Identitäten beweisen: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 20:10 Mo 01.12.2008
Autor: Dinker

Ist das eine verarschung?

Bezug
                                        
Bezug
Identitäten beweisen: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 20:12 Mo 01.12.2008
Autor: Marc

Klar, was sonst?

Bezug
                                                
Bezug
Identitäten beweisen: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 20:15 Mo 01.12.2008
Autor: Dinker

Wieso machst du das?

Bezug
                                                        
Bezug
Identitäten beweisen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 20:31 Mo 01.12.2008
Autor: Marc

Wieso hast du deine erste Korrekturmitteilung geschrieben?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de